Зонд семиэлектродного бокового каротажа (рис. 1 и 2, б) состоит из центрального электрода А0 и трех пар симметрично расположенных относительно него электродов M1 и М2, N1 и N2, A1 и A2. Симметричные одноименные электроды попарно соединены между собой. Через электрод А0 пропускают ток I0, сохраняемый постоянным по величине в процессе записи кривой. Электроды А1 и А2 являются экранными; через них пропускается ток, сила которого автоматически регулируется так, чтобы напряжение между электродами M1 и N1 или, что все равно (так как соответствующие электроды закорочены), между электродами М2 и N2, было равно нулю.
Так как выполняется условие, что напряжение между измерительными электродами М1 и N1 (а также между М2 и N2) равно нулю, то сила тока на участке скважины M1N1 и M2N2 также равна нулю. Получается, что будто бы скважина и прилегающие к ней участки пласта над электродом А0 и под ним были замещены изолятором (рис. 2, б). Ток, выходящий из электрода А0, распространяется на значительное расстояние в радиальном направлении (от скважины) слоем, перпендикулярным к оси скважины (горизонтально). Измеряемое напряжение ?Uкс представляет собой падение потенциала по указанному слою от скважины до удаленной точки. Естественно, что на это падение потенциала скважина и вмещающие породы оказывают небольшое влияние. Это позволяет во многих случаях получить кажущееся удельное сопротивление, значительно более близкое к удельному, чем при обычных зондах; в частности, обеспечивается лучшая оценка удельного сопротивления тонких пластов.
Разность потенциалов измеряют между измерительными электродами зонда и достаточно далеко удаленным от зонда электродом N. В результате измерений получают кажущееся удельное сопротивление рк, оно также определяется по формуле (1)
рк = K?Uкс/I0
где I0 -- сила тока через основной электрод A0; К -- коэффициент зонда; он берется таким, чтобы в однородной среде кажущееся удельное сопротивление получалось равным удельному.
Результат измерений зондом бокового каротажа относят к точке А0; за длину L зонда принимают расстояние между точками О1 и О2 (серединами интервалов M1N1 и M2N2). За точку записи условно принимают электрод А0. Характерными для зонда являются также расстояние Loбщ=A1A2, называемое общим размером зонда, и параметр фокусировки зонда q=(Loб-L)/L. Параметр фокусировки влияет на форму слоя токовых линий, выходящих из основного электрода. В случае однородной среды с увеличением q, т.е. с приближением электродов к основному, слой выходящих из электрода А0 токовых линий по мере удаления от оси скважины сжимается, а при уменьшении величины q - расширяется.
Влияние скважины и зоны проникновения на рк можно исключить в том случае, если общий размер семиэлектродного зонда значительно больше диаметра скважины (Lобщ>>dc). Однако увеличение длины зонда ухудшает выделение тонких пластов. Обычно выбирается зонд общим размером 2-3 м. Для неоднородной среды в зависимости от скважинных условий измерения выбирается зонд с Lобщ=2 м и q=1,5 либо с Lобщ=3 м и q=4. На практике используются два зонда - с большим радиусом исследования (A11,1N10,2М10,2А00,2хМ20,2N21,1А2) и с малым (А10,5N10,2М10,3А00,3М20,2N20,5А2).
Преимущество зонда бокового каротажа перед обычными зондами особенно наглядно иллюстрируется на рис. 3, где показано распределение токовых линий, выходящих из расположенного в середине тонкого пласта большого сопротивления токового электрода, в случае обычного зонда (а), когда экранные электроды отсутствуют, и при зонде бокового каротажа (б), когда имеются экранные электроды, сила тока через которые регулируется так, как указано выше. Как видно, при обычном зонде токовые линии в пределах пласта в основном идут вверх и вниз по скважине, пока не выйдут во вмещающие породы низкого сопротивления; поэтому кажущееся удельное сопротивление много меньше удельного. Наоборот, при боковом каротаже токовые линии распространяются по пласту так, что полученное сопротивление, пропорциональное падению потенциала между электродом А0 и бесконечностью по пласту, будет близко к удельному сопротивлению пласта.
Рис. 3. Распределение токовых линий, выходящих из расположенного против середины пласта большого сопротивления электрода А обычного зонда (а) и электрода А0 зонда бокового каротажа (б).
Для увеличения радиуса исследования в методе БК применяются девятиэлектродные фокусированные зонды, в которых между основными экранными А1 и А2 и измерительными N1 и N2 электродами установлены дополнительные экранные электроды В1 и В2.
Фокусировка тока центрального электрода в этом зонде может производиться двумя способами:
1) через электроды В1 и В2 пропускают ток обратной полярности и постоянной силы, в несколько десятков раз превышающей силу тока, проходящего через электрод А0; ток, протекающий через электроды А1 и А2, регулируют так, чтобы разность потенциалов между измерительными электродами М1 и N1 (M2 и N2) равнялась нулю;
2) поддерживают постоянной амплитуду тока, проходящего через электроды А1 и А2, а равенство нулю разности потенциалов между M1 и N1(M2 и N2) обеспечивается регулировкой силы и направления тока, протекающего через электроды В1 и В2.
При первом способе фокусировки тока I0 радиус исследования девятиэлектродного зонда заметно увеличивается по сравнению с семиэлектродным зондом в пластах большой мощности, при втором способе фокусировки девятиэлектродный зонд приобретает более благоприятные характеристики и радиус его исследования в пластах большой мощности еще больше возрастает. Этот зонд предложен венгерскими геофизиками и назван нормализованным. Он позволяет регистрировать величину рк, близкую к истинному удельному сопротивлению пород до очень больших значений.
Существует также девятиэлектродный так называемый псевдоэкранный зонд, который отличается от семиэлектродного фокусированного зонда тем, что обратный токовый электрод В в нем приближен к зонду и расположен в виде раздвоенных электродов В1 и В2 с внешней стороны электродов А1 и А2, симметрично относительно центрального электрода А0 (см. рис. 1 и 2, в). Через электроды А0, А1 и А2 замыкается токовая цепь. В связи с малым расстоянием от обратных токовых электродов до зонда создается такое распределение токовых линий центрального электрода, при котором значительная часть потенциала падает в непосредственной близости от скважины. В связи с этим радиус исследований девятиэлектродного псевдоэкранного зонда значительно меньше, чем семиэлектродного, и с его помощью можно изучать удельное сопротивление только ближней к скважине зоны пласта. По принципу работы этот зонд аналогичен семиэлектродному и к нему применимы те же теоретические расчеты. Условием фокусировки тока центрального электрода является также равенство потенциалов на электродах M1 и N1 (M2 и N2). Характерные размеры зонда: Lобщ(А) -- расстояние А1А2, Lобщ(В) -- расстояние В1В2, L -- расстояние О1О2. Параметр фокусировки q=(Lобщ(А)--L)/L.
2.3. ВЫБОР АППАРАТУРЫ, ЕЕ ХАРАКТЕРИСТИКИ И ПРИНЦИП РАБОТЫ
В серийной аппаратуре БК наибольшее распространение получили трехэлектродные зонды с двумя закороченными между собой экранными электродами АЭ1 и Аэ2.
При конструировании трехэлектродных зондов БК учитывают следующие обстоятельства:
1) уменьшение L снижает влияние вмещающих пород, однако при L<0,3dc (где dc -- диаметр скважины) резко возрастает погрешность измерений;
2) с увеличением Loбщ улучшается фокусировка тока и возрастает радиус исследования;
3) с уменьшением dз возрастает влияние скважины, поэтому dз>0,25dc. В приборах АБКТ, Э1, К1А-723М применен зонд, для которого L = 0,15 м; Loбщ = 3,2 м; d3 = 0,07--0,073 м. Коэффициент К такого зонда 0,24.
В приборах БК с трехэлектродными зондами равенство потенциалов А0 и Аэ достигается одним из следующих способов питания электродов; 1) автоматическим изменением тока через электрод Аэ, при котором ток I0 сохраняется постоянным; 2) соединением между собой всех трех электродов, при котором I0 изменяется при измерении. В аппаратуре АБКТ соединение электрода А0 с Аэ выполнено с помощью небольшого резистора R, который одновременно используется для измерения I0. Сопротивление резистора (примерно 0,01 Ом) достаточно мало, чтобы не нарушить эквипотенциальность зонда, но достаточно велико для измерения I0. В аппаратуре серии Э роль резистора выполняет вторичная обмотка трансформатора, сопротивление R которой по переменному току питания примерно равно 0,01 Ом и рассчитано как R = R*/n2, где R* -- сопротивление подстроечного резистора, подключенного параллельно первичной обмотке , а n -- коэффициент трансформации. При n = 1000 значение R* равно 10 кОм, что облегчает его подбор.
Более сложные семи- и девятиэлектродный зонды БК использованы в аппаратуре БКС-2. В них применена стабилизация тока I0 с помощью автокомпенсатора.
Аппаратура электрического каротажа типа K1A-723
Прибор предназначен для проведения ГИС в нефтяных и газовых скважинах. Прибор обеспечивает возможность за один проход по интервалу исследования выполнить измерения комплексом зондов БКЗ, зондом БК-3, зондом ИК, резистивиметром и ПС. Применяется для исследования в не обсаженных скважинах заполненных промывочной жидкостью. Отличается малыми габаритами, что позволяет использовать его при проведений измерений через буровой инструмент. Обладает высокой производительностью и надёжностью.
В приборе применена ТИС с времяимпульсной модуляцией сигнала и временным разделением каналов.
Аппаратура работает на трёхжильном бронированном кабеле длинной 5000 метров.
Длина прибора с зондом БКЗ - 20,4 метра.
Диаметр - 73 мм, вес - 80кг.
Питание 400 Гц, 400мА.
Максимальная рабочая температура - 1200С.
Давление - 80 мПа
Скорость каротажа - 2000 м/ч.
Рис 4. Функциональная схема прибора K1A-723M
При проведении измерений ток питания скважинного прибора подаётся по первой жиле кабеля и оплётке кабеля. Ток питания - переменный, частота - 400Гц, сила тока - 400мА. Ток питания поступает в блок БК-БКЗ, блок ТИС и блок ИК.
Питание токовых электродов А1, А2,Аэ поступает для питания зондов БК-БКЗ. Измеряемые сигналы, поступающие с зондов БК и БКЗ, поступают в блок БК-БКЗ, который обеспечивает питание зондов, приём, усиление, согласование со входом ТИС сигналов от зондов. Измеряемые сигналы с блока БК-БКЗ поступают на вход блока ТИС.
Питание зонда ИК происходит от блока ИК, а измеряемый сигнал поступает в блок ИК, где происходит усиление сигнала и согласование со входом ТелеИзмерительной системы (ТИС). С выхода блока ИК измеряемый сигнал поступает на вход блока ТИС. С выхода блока ТИС измеряемые сигналы зондов БК-БКЗ и ИК во времяимпульсной модуляции по первой жиле и оплётке кабеля поступает на поверхность. В скважинном приборе также имеется возможность включать нуль-сигнал и стандарт сигнал.
3. РАСЧЁТНАЯ ЧАСТЬ
3.1 РАСЧЕТ КОЭФФИЦИЕНТА ЗОНДА
Коэффициент трёхэлектродного зонда К рассчитывают, определяя потенциал поля удлинённого эллипсоида вращения в однородной среде:
Страницы: 1, 2, 3, 4, 5, 6