Рефераты. Пірнаючі циклони над Україною

результаті аналізу складових балансів кінетичної енергії і вологовмісту встановлено, що:

найбільші інтегральні запаси кінетичної енергії мав циклон I типу (11.88? ?10-5 Дж/м2), а найменші - циклон II типу (6.47?10-5 Дж/м2). Максимум енерговмісту відмічався в тиловій частині циклонів I і III типів і передній - в циклоні II типу;

приплив кінетичної енергії за рахунок дивергенції горизонтального потоку (К2>0) відбувався в основному крізь західну і північну межі вихорів з перевагою того чи іншого напрямку в залежності від типу циклона, а відтік - переважно крізь східну межу в циклонах I і II типів, і крізь південну - в циклоні III типу;

для усіх трьох типів пірнаючих циклонів характерним є приплив кінетичної енергії за рахунок дивергенції вертикального потоку (К3>0) в середній тропосфері (шар 700-500 гПа) із вище - і нижчерозташованих шарів; максимальний відтік спостерігався в верхній тропосфері. Внесок цього фактору на порядок менше горизонтального переносу кінетичної енергії;

в усіх циклонах спостерігався перехід потенціальної енергії в кінетичну (К4>0) в нижній тропосфері; зворотній процес відбувався в шарі 700-300 гПа в циклонах I і II типів. В циклоні III типу генерація кінетичної енергії відмічалася в усій тропосфері з максимумом в шарі 500-300 гПа (33.9 Вт/м2). При цьому основні перетворення енергії в усіх циклонах відбувалися в їх тилових частинах;

основний внесок в формування пошарових змін К4 дає зміна вітру з висотою (дFсдв) з максимумом впливу в області верхньотропосферної струмінної течії (500-300 гПа). Термічний фактор (дFадв) переважатиме в верхніх шарах (300-100 гПа), однак інтегральне значення його в декілька разів менше, ніж зсувного;

знак генерації кінетичної енергії К4 добре узгоджується з еволюцією циклонічних вихорів. Так, приплив енергії в усій товщі тропосфери за рахунок цього фактору в циклоні III типу призводив до значного його розвитку з висотою (до рівня 200 гПа) в послідуючий після фази максимального розвитку період. І, навпаки, відтік кінетичної енергії за рахунок її перетворення в потенціальну в середній і верхній тропосфері передував заповненню циклонів I і II типів в цьому шарі атмосфери;

основні запаси водяної пари q були зосереджені в передніх частинах циклонів в нижньому 3-ох кілометровому шарі (біля 75% інтегрального вологовмісту). Найбільше значення q відмічалося в циклоні II типу - 11.14 кг/м2, найменше - в циклоні III типу - 6.94 кг/м2;

надходження вологи в циклонах відбувалося в основному за рахунок горизонтального переносу (q2), який призводив до збільшення вологовмісту в центральних частинах циклонів I і III типів, і зменшення - в циклоні II типу. При цьому приплив вологи в циклоні I типу відбувався переважно крізь західну межу, в циклоні II типу - крізь південну, і в циклоні III типу - крізь північну;

перерозподіл водяної пари вертикальними токами (q3) призвів до його накопичення в середній тропосфері в циклонах II і III типів, і в верхній - в циклоні I типу.

Таким чином, пірнаючі циклони різних типів в фазі максимального розвитку відрізняються перш за усе за такими характеристиками як: K2, q2, K4, а величини K3 і q3 можуть бути використані як додаткові ідентифікатори при діагностиці типу циклона.

5. Дослідження динаміки енергетики і вологовмісту пірнаючих циклонів в процесі їх еволюції

Вологістно-енергетичні характеристики розглядалися тільки в тому шарі атмосфери, в якому вихор був поширений в конкретний момент часу, що дало змогу оцінити зміну інтенсивності енергетичних перетворень в залежності від фази розвитку циклонів.

Незважаючи на однакову тривалість існування розглядаємих циклонів (4 доби), вони суттєво відрізняються за характером еволюції.

Так, циклон I типу пройшов чотири фази розвитку фронтального циклона - від фази утворення (хвилі) до фази заповнення, причому кожний період тривав біля доби. Еволюція цього віхора не призвела до розвитку висотного циклона.

Циклон II типу представляв собою невеликий частковий вихор в улоговині поширеної депресії над Баренцевим морем. Процес "пірнання" здійснився в результаті регенерації цього часткового циклону на холодному фронті. Характерною особливістю цього циклона став той факт, що він первісно був розвинений до рівня АТ-300 гПа.

Циклон III типу відрізнявся від двох попередніх швидким розвитком на протязі доби від фази утворення хвилі до фази максимального розвитку. При цьому спостерігався розвиток цього циклону до рівня АТ-300 гПа, а в період заповнювання, який тривав дві доби, - до рівня АТ-200 гПа.

Таким чином, вологістно-енергетичні характеристики в пірнаючих циклонах дають можливість кількісного опису їх еволюції, включаючи і процес регенерації.

Основні виводи стосовно балансу кінетичної енергії зводяться до такого:

інтегральний вміст кінетичної енергії в пірнаючих циклонах по мірі їх розвитку з висотою в 2-3 рази зростає від моменту виникнення до початку заповнення. В фазах виникнення і заповнення основні запаси К зосереджені в передніх частинах циклонів, а в фазі максимального розвитку - переважно в тилових;

приплив кінетичної енергії за рахунок тривимірної дивергенції потоку (К2+К3) переважав в процесі еволюції циклонів II і III типів, а в циклоні I типу спостерігався постійний відтік енергії за рахунок цього фактору. Найбільша інтенсивність адвективних процесів при цьому спостерігалася в тиловій частині в період розвитку, при заповненні - в передніх частинах циклонів;

генерація кінетичної енергії К4 додатна в усіх трьох циклонах в фазах утворення-максимальний розвиток, а в період заповнення значно слабішає в циклонах I і II типів і змінює знак на протилежний в циклоні III типу;

порівняння адвективного припливу кінетичної енергії (К2+К3) і її генерації К4 показало, що в циклонах I і II типів ці фактори одного порядку практично в усі фази розвитку, а в циклоні III типу перехід потенціальної енергії в кінетичну переважав в процесі його еволюції;

регенерація циклона II типу добре виражена в часовому ході інтегрального вмісту кінетичної енергії: максимальне значення К (10.19?10-5 Дж/м2) спостерігалося перед регенерацією, і значне її зменшення (майже в 3 рази) - в наступний строк. Подальший розвиток циклону супроводжувався збільшенням кінетичної енергії, однак її максимальне значення було все ж таки менше, ніж в строки, попередні регенерації. Процес регенерації супроводжувався інтенсивним горизонтальним припливом кінетичної енергії (К2>0) в область вихора. Просторова термодинамічна неоднорідність циклона під час входження холодного фронту достатньо чітко відображається в величинах генерації кінетичної енергії: в передній і тиловій частинах відмічалися практично рівні за модулем, але протилежні за знаком величини К4 (41.4 і - 46.4 Вт/м2 відповідно);

швидкий розвиток циклона III типу з висотою відбувався на фоні інтенсивної генерації кінетичної енергії в період утворення-максимальний розвиток, при цьому основний внесок в інтегральне значення К4 належав тиловій частині (137.9 Вт/м2);

аналіз повної зміни кінетичної енергії (К1+К2+К3) показав, що циклон I типу в цілому був осередком накопичення кінетичної енергії, а циклони II і III типів - осередками витоку.

При аналізі складових рівняння балансу водяної пари в процесі еволюції пірнаючих циклонів зроблено такі висновки:

для всіх типів пірнаючих циклонів характерне зменшення вологовмісту під час їх розвитку. При цьому основні запаси вологи зосереджені: в передній частині - в циклоні II типу, в тиловій - в циклоні III типу. В циклоні I типу відмічалась зміна розташування максимума q від однієї фази до іншої, обумовлена параболічною траєкторією пересування цього циклону;

циклони I і II типів в процесі еволюції, судячи по знаку дисипативного члена q4, віддають вологу навколишньому середовищу в основному шляхом неадіабатичних процесів (конденсація водяної пари, утворення хмарності та опадів). В циклоні III типу процес конденсації переважав в фазах утворення і заповнювання, а в період максимального розвитку вологовміст вихора збільшувався за рахунок інтенсивної тривимірної адвекції;

регенерація циклона II типу відбувалася на фоні інтенсивного горизонтального припливу вологи (14.09?10-5 кг/м?с2), що призвело до збільшення інтегрального вологовмісту в області циклона в наступну добу майже в два рази.

Порівняння отриманих для пірнаючих циклонів характеристик балансів кінетичної енергії і вологовмісту з аналогічними даними для циклонів інших типів показало, що досліджуємі циклони є середніми за інтенсивністю енергетичних перетворень об'єктами. При цьому, найбільш близькими до циклонів інших типів за характером часових змін вологістно-енергетичних характеристик є циклони I типу, тоді як циклони II і III типів, для яких яскраво виражений меридіональний характер макроциркуляції, за рядом параметрів (К2, К4, q) суттєво відрізняються від інших позатропічних циклонів.

Таким чином, використання енергетичних і вологістних характеристик пірнаючих циклонів в процесі їх еволюції дає можливість з врахуванням традиційного синоптичного аналізу для розробки об'єктивного методу ідентифікації пірнаючих циклонів різних типів.

Отримані різними методами (синоптико-кліматичним, гідродинамічним, енергетичним) відомості про пірнаючі циклони дозволяють поглибити знання про фізичний механізм і кількісно оцінити можливість існування та еволюції цих процесів.

Список літератури

1. Воробьев В.И. Синоптическая метеорология. - Л.: Гидрометеоиздат, 1991.

2. Дашко Н.А. Курс лекций по синоптической метеорологии. - Владивосток: Дальневосточный государственный университет, 2005.

3. Зверев А.С. Синоптическая метеорология. - Л.: Гидрометеоиздат, 1977.

4. Пальмен Э., Ньютон Ч. Циркуляционные системы атмосферы. Л.: Гидрометеоиздат, 1973.

5. Семёнова И.Г. Термические и динамические характеристики ныряющих циклонов, влияющих на погодные условия Украины // Метеорология, климатология и гидрология. - 1997. - Вып.34. - С.21-25.

6. Семёнова И.Г. Энергетика ныряющих циклонов // Метеорология, климатология и гидрология. - 1997. - Вып.34. - С.25-30.

7. Семёнова И.Г. Динамика влажностно-энергетических характеристик ныряющих циклонов // Метеорология, климатология и гидрология. - 1998. - Вып.35. - С.63-69.

8. Хохлов В.Н., Семёнова И.Г. Восстановление трехмерных полей метеорологических величин с помощью сплайн-функций; Одес. гидрометеоролог. ин-т. - Одесса, 1994. - 11 с. - Рус. - Деп. в ГНТБ Украины 03.01.95, № 37 - Ук95 // Анот. в библиогр. указ. ВИНИТИ, № 4, 1995.

9. Кивганов А.Ф., Хохлов В.Н., Семёнова И.Г. Энергетические характеристики циклонов, влияющих на погодные условия Украины; Одес. гидрометеоролог. ин-т. - Одесса, 1995. - 30 с. - Рус. - Деп. в ГНТБ Украины 05.12.95, № 2621-Ук95 // Анот. в библиогр. указ. ВИНИТИ, № 3, 1996.

10. Семёнова И.Г. Ныряющие циклоны, оказывающие влияние на погодные условия Украины; Одес. гидрометеоролог. ин-т. - Одесса, 1996. - 15 с. - Рус. - Деп. в ГНТБ Украины 12.06.96, № 1400-Ук96 // Анот. в библиогр. указ. ВИНИТИ, № 9 (297), б/о 207, 1996.

11. http://www.lib.ua-ru.net/inode/18234.html

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.