Рефераты. Рославльское нефтяное месторождение

p align="left">Спуск нагревательного элемента в скважину проводится с помощью специализированных геофизических подъемников, снабженных необходимым оборудованием.

После спуска нагревательного элемента в скважину он закрепляется и герметизируется с помощью специального крепления и сальникового устройства (рис.3.17).

Станция управления прогревом предназначена для контроля и управления процессом прогрева жидкости в объеме лифтовых труб эксплуатационных скважин.

Станция управления прогревом включает в себя: входной рубильник, входной автоматический выключатель, устройство защитного отключения по току утечки, трехфазный тиристорный управляемый выпрямитель для бесконтактного включения/выключения, терморегуляторы для регулирования и контроля рабочего процесса, приборы измерения тока и напряжения, приборы измерения и управления температурой нагревательного элемента, индикаторы неисправностей.

Станция управления прогревом позволяет:

- осуществлять и прекращать подачу электрического тока на нагревательный элемент;

- контролировать ток, протекающий через нагревательный элемент;

- контролировать напряжение, приложенное к нагревательному элементу;

- регулировать температуру нагревательного элемента в скважине;

-прекращать подачу электрического тока или ограничивать ее при отключении станции управления работой УЭЦН;

- измерять температуру добываемой жидкости в термокармане, врезанном в нефтесборный коллектор;

- измерять и регулировать температуру внутри герметичного шкафа станции управления прогревом;

- автоматически отключать силовой пускатель (снимать напряжение с силового трансформатора и, соответственно, нагревательного элемента) от промышленной сети при наличии тока утечки, а также управлять другими устройствами с помощью контакта промежуточного реле.

Вся аппаратура станции управления прогревом смонтирована в герметичном шкафу. Размер шкафа 1800/1200/400 мм (рис.3.18).

Силовой трансформатор. Питание нагревательного элемента производится в зависимости от скважинных условий: либо непосредственно от промышленной сети напряжением 380В, либо при необходимости увеличения мощности прогрева через силовой трансформатор.

Во время работы установки по прогреву, станции управления накапливает и систематизирует данные температур, токов и напряжений в функции времени. Временные периоды снятия отчетов указанных параметров могут устанавливаться в произвольной форме. В дальнейшем эти параметры могут быть представлены как в графической, так и в табличной форме.

На рис.3.19 представлены графики изменения температуры окружающей среды и температуры жидкости в термокармане во времени.

Рисунок 3.19 - Изменение температуры воздуха и температуры в термокармане во времени

Из представленного графика видно, что продолжительность выхода на температурный режим после включения кабеля составляет примерно 12 часов.

Колебания температуры в термокармане связаны с тем, что не удается полностью изолировать термодатчик (рис.3.20) от влияния температуры окружающей среды, поэтому он частично отражает и ее. При этом температура протекающей жидкости является постоянной для заданного температурного режима. Увеличение температуры в период с 14 октября связанно с тем, что был изменен температурный режим, и температуру увеличили до 17оС, путем увеличения токовых нагрузок.

На рис.3.21 представлена схема подключения греющего кабеля к скважине, оборудованной УЭЦН.

Рисунок 3.21- Схема подключения греющего кабеля

3.5.3 Опыт применения греющего кабеля в ОАО «Аганнефтегазгеология»

В ОАО «Аганнефтегазгеология» использование технологии прогрева НКТ с помощью греющего кабеля начато с 2005 года. В настоящее время данным методом защищены от образования ГПП 7 скважин.

Практика добычи нефти с помощью УЭЦН показывает, что интенсивное образование ГПП происходит лишь в начальный период (по некоторым скважинам) работы после смены УЭЦН. После 20-30 суток работы скважины ее режим стабилизируется и в дальнейшем появляется возможность бороться с образованием гидратно-парафиновых пробок обычным способом - скребкованием. Простота технологии спуска-подъема греющего кабеля позволяет оперативно извлекать его из скважины с установившемся режимом работы и спускать в скважины, где это наиболее необходимо в данный момент.

В условиях эксплуатации УЭЦН на скважинах, где приток жидкости из пласта ниже производительности УЭЦН и высокий газовый фактор, применение греющего кабеля позволяет путем установки штуцера (на устье) малого диаметра (2-3 мм) выводить скважины на стабильный режим работы, что в конечном итоге приводит к увеличению межремонтного периода.

Проведенный анализ работы скважин со спущенным греющим кабелем выявил следующие положительные результаты:

1. постоянную чистоту внутреннего пространства НКТ, фонтанной арматуры и прилегающих к ним ближних трубопроводов;

2. повышение работоспособности и увеличение срока службы УЭЦН, в том числе за счет снижения вязкости жидкости, подаваемой на поверхность;

3. непрерывность работы скважины и трубопроводов - полностью ликвидирует текущие простои скважины, связанные с образованием ГПП, намного увеличивает время между ремонтами скважин, снижение объема ремонтных работ, уменьшение количества ремонтных бригад и спецтехники;

4. полностью исключает применение других способов удаления гидратно-парафиновых отложений (СПО скребков, горячая обработка нефтью с помощью АДП и др.);

5. возможность регулировки мощности установки - выбор оптимального температурного и энергосберегающего режима работы скважины или трубопровода;

6. экологическую чистоту вокруг скважины;

7. максимальное упрощение управления работой скважины, которое сводится к приборному контролю за техническими и электрическими параметрами и компьютерной обработке этих данных;

8. увеличение среднего дебита скважины, улучшение работы пласта за счет равномерного режима добычи, уменьшение потерь нефти, повышение коэффициента эксплуатации скважин;

9. непрерывную работу скважин, находящихся в труднодоступных местах, с интервалами вечной мерзлоты, с высоковязкой и битумной нефтью.

4 РАСЧЕТНЫЙ РАЗДЕЛ

4.1 Расчет и подбор оборудования УЭЦН для скважины №1063, куст №1, пласт БВ8 , Рославльского месторождения

Таблица 4.1 - Исходные данные

Показатели

Числовые значения

Глубина скважины, Н, м

1750

Забойное давление, Рзаб, МПа

14,32

Пластовое давление, Рпл, МПа

19,5

Плотность воды, св, кг/м3

1008

Плотность нефти, сн, кг/м3

820

Обводненность, nв, д. ед.

0,95

Коэффициент продуктивности, К, т/сут МПа

3,087

Газовый фактор, Г, м3/т

85

Коэффициент подачи, бп

0,75

1. Определяем плотность нефтяной эмульсии скважины ссм, кг/м3 ссм = св· nв+ сн (1- nв) (4.2)

где

ссм

-

плотность нефтяной эмульсии, кг/м3;

св

-

плотность воды, кг/м3;

сн

-

плотность нефти, кг/м3;

nв

-

обводненность, д. ед.;

ссм=1008·0,45+820(1-0,95)=998,6 кг/м3

2. Определяем глубину спуска насоса в скважину Lн, м

Lн = Рзаб / (ссм + g) (4.3)

где

Lн

-

глубина спуска насоса, м;

Рзаб

-

забойное давление, МПа;

ссм

-

пластовое давление, МПа;

g

-

коэффициент свободного падения;

Lн=14,32·10-6/(998,6·9,81)=1461,8 м

3. Определяем депрессию на пласт ?Р, МПа

?Р = Рпл - Рзаб (4.4)

где

-

депрессия на пласт, МПа;

Рзаб

-

забойное давление, МПа;

Рпл

-

пластовое давление, МПа;

?Р=19,5-14,32=5,18 МПа

4. Определяем фактический весовой дебит скважины Qф.в., т/сут

Qф.в. = К ?Р (4.5)

где

Qф.в.

-

фактический весовой дебит, т/сут;

К

-

коэффициент продуктивности, т/сут МПа;

-

депрессия на пласт, МПа;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.