Химический состав земной коры как фактор биосферы
Введение
Три наружные оболочки Земли, различающиеся фазовым состоянием, - твердая земная кора, жидкая гидросфера и газовая атмосфера - тесно связаны между собой, а вещество каждой из них проникает в пределы других. Подземные воды пронизывают верхнюю часть земной коры, значительный объем газов находится не в атмосфере, а растворен в гидросфере и заполняет пустоты в почве и горных породах. В свою очередь, вода и мелкие твердые минеральные частицы насыщают нижние слои атмосферы.
Наружные оболочки связаны не только пространственно, но и генетически. Происхождение оболочек, формирование их состава и его дальнейшая эволюция взаимосвязаны. В настоящее время эта связь в значительной мере обусловлена тем, что наружная часть планеты охвачена геохимической деятельностью живого вещества.
Массы оболочек сильно различаются. Масса земной коры оценивается в 28,461018 т, Мирового океана - 1,471018 т, атмосферы - 0,0051018 т. Следовательно, в земной коре находится основной резерв химических элементов, которые вовлекаются в миграционные процессы под воздействием живого вещества. Концентрации и распределение химических элементов в земной коре оказывают сильное влияние на состав живых организмов суши и всего живого вещества Земли.
Рассматривая проблему состава живого вещества, В.И. Вернадский отмечал: «…химический состав организмов теснейшим образом связан с химическим составом земной коры; организмы приноравливаются к нему».
1. Относительное содержание химических элементов в земной коре
Химики и петрографы начиная со второй половины XIX в. изучали химический состав горных пород методами весового и объемного химического анализа. Суммируя результаты многочисленных анализов горных пород, Ф. Кларк показал, что в земной коре преобладают восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, калий и натрий. Этот основной вывод неоднократно подтвержден результатами последующих исследований. Методами химического анализа, которыми пользовались в XIX в., определение низких концентраций элементов было невозможно. Требовались принципиально иные подходы.
Мощный импульс изучению химических элементов с очень низкой концентрацией в веществе земной коры дало применение более чувствительного метода - спектроскопического анализа. Новые факты позволили В.И. Вернадскому сформулировать принцип «всюдности» всех химических элементов. В докладе на XII съезде российских естествоиспытателей и врачей в декабре 1909 г. он заявил: «В каждой капле и пылинке вещества на земной поверхности, по мере увеличения тонкости наших исследований, мы открываем все новые и новые элементы… В песчинке или в капле, как в микрокосмосе, отражается общий состав космоса».
Идея «всюдности» химических элементов долгое время вызывала настороженность даже со стороны крупных ученых. Это было связано с тем, что элементы, содержащиеся в количестве ниже уровня чувствительности метода, при анализе не обнаруживались. Создавалась иллюзия их полного отсутствия, что отразилось на терминологии. В геохимии возникли термины редкие элементы (die seltene Elementen - нем.; rare elements - англ.), частота (die Haufigkeit - нем.) обнаружения. В действительности имеет место не реальная редкость или малая частота встречаемости элемента при анализах, а его низкая концентрация в изучаемых пробах, которая не может быть определена недостаточно чувствительными методами анализа.
Низкая чувствительность метода часто не позволяла определять количество элемента, а лишь констатировать присутствие его «следов». С тех пор в геохимической литературе широко используется термин? применявшийся В.М. Гольдшмидтом и его коллегами в 1930-х гг.: элементы-следы (die Spurelemente - нем.; trace elements - англ.; des elements traces - фр.).
В итоге усилий ученых разных стран в 20-х гг. XX в. сложилось общее представление о составе земной коры. Средние значения относительного содержания химических элементов в земной коре и других глобальных и космических системах известный геохимик А.Е. Ферсман предложил называть кларками в честь ученого, который наметил путь к количественной оценке распространения химических элементов.
Кларк - весьма важная величина в геохимии. Анализ значений кларков позволяет понять многие закономерности распределения химических элементов на Земле, в Солнечной системе и доступной нашим наблюдениям части Вселенной. Кларки химических элементов земной коры различаются более чем на десять математических порядков. Столь существенное количественное различие должно отразиться на качественно неодинаковой роли двух групп элементов в земной коре. Наиболее ярко это проявляется в том, что элементы первой группы, содержащиеся в относительно большом количестве, образуют самостоятельные химические соединения, а элементы второй группы с малыми кларками преимущественно распылены, рассеяны среди химических соединений других элементов. Элементы первой группы называют главными, элементы второй - рассеянными. Их синонимами в английском языке являются minor elements, rare elements, наиболее употребляемый синоним trace elements. Условной границей между группами главных и рассеянных элементов в земной коре может служить величина 0,1%, хотя кларки большей части рассеянных элементов значительно меньше и измеряются тысячными и меньшими долями процента. Понятие о состоянии рассеяния химических элементов, так же как и о их «всюдности», было введено в науку В.И. Вернадским.
Полный химический состав верхнего, так называемого гранитного, слоя континентального блока земной коры приведен в табл. 1.1.
Таблица 1.1 Кларки химических элементов гранитного слоя коры континентов
Химический элемент
Атомный номер
Среднее содержание, 110-4%
О
8
481 000
Mg
12
12000
Si
14
399 000
Ti
22
3300
А1
13
80 000
H
1
1000
Fe
26
36000
P
15
800
К
19
27000
F
9
700
Са
20
25000
Мn
25
Na
11
22000
Ва
56
680
S
16
400
Ег
68
3,6
С
6
300
Yb
70
Sr
38
230
Hf
72
3,5
Rb
37
180
Sn
50
2,7
Cl
17
170
и
92
2,6
Zr
40
Be
4
2,5
Се
58
83
Br
35
2,2
V
23
76
Та
73
2,1
Zn
30
51
As
33
1,9
La
57
46
W
74
Yr
39
Ho
67
1,8
24
34
Tl
81
Nd
60
Eu
63
1,4
Li
3
Tb
65
N
7
Ge
32
1,3
Ni
28
Mo
42
Cu
29
Lu
71
1,1
Nb
41
I
53
0,5
Ga
31
18
Tu
69
0,3
Pb
82
In
49
0,25
Th
90
Sb
0,20
Sc
21
Cd
48
0,16
В
5
10
Se
0,14
Sm
62
Ag
47
0,088
Gd
64
Hg
80
0,033
Pr
59
7,9
Bi
0,010
Co
27
7,3
Au
79
0,0012
Dy
66
6,5
Те
52
0,0010
Cs
55
3,8
Re
75
0,0007
Страницы: 1, 2