Рефераты. Технология ADSL - (диплом)

p>С другой стороны, нам требуется обеспечить максимальное использование системы. Максимальное количество пользователей должны иметь возможность надежного доступа к службам с минимальной задержкой и максимальной защитой от интерференции. Вот то, что нужно пользователю.

    Рисунок 6. Параметры.

Существуют определенные теоретические ограничения, влияющие на конечный продукт [9]:

    Теоретическая минимальная полоса пропускания по Найквисту

Теорема мощности Шеннона-Хартли и связанный с ней предел Шеннона Ограничения, накладываемые правительством, например на выделяемый частотный диапазон

    Технологические ограничения, например сложные компоненты

Различные явления, которые влияют на производительность передачи по витой паре могут быть разделены на следующие категории:

    Затухание
    Дисперсия импульса
    Отражения
    Несогласованный приемопередатчик;
    Изменения диаметра кабеля
    Шум и интерференция
    Белый шум;
    Перекрестные помехи
    Интерференция на радио частоте
    Импульсный шум
    Критерий Найквиста

Найквист изучал проблему определения формы принимаемого импульса, которая позволила бы избежать межсимвольной интерференции (Inter-Symbol Interference ISI) в детекторе. Им было показано, что для детектирования без ISI Rs символов в секунду, минимальная необходимая полоса пропускания составляет Ѕ Rs Гц. Данное правило выполняется при условии, что частотная характеристика коэффициента передачи имеет прямоугольную форму.

    Wmin = 1/2Rs

При использовании среды передачи, имеющей форму частотной характеристики, отличную от прямоугольной равенство примет следующий вид:

    Wmin = Ѕ(1+r)Rs
    где r – число от 0 (прямоугольная форма) до 1.

Вывод Критерий Найквиста вводит ограничения на скорость передачи в символах в секунду для данной полосы пропускания. Например в телефонии используется полоса пропускания 3 КГц. В этом случае максимально достижимая скорость составит 6000 символов в секунду (или Бод).

    Теорема Шеннона – Хартли

В данной теореме определено, что достичь максимальной скорости (бит/сек) можно путем увеличения полосы пропускания и мощности сигнала и, в то же время, уменьшения шума.

    (1)

где С – скорость (бит/с), W – полоса пропускания (Гц), SNR (дБ) – отношение сигнал/шум

Из формулы (1) видно, что для того, чтобы послать дополнительные биты в канал необходимо удвоить отношение сигнал/шум (SNR). Этого можно достичь удвоив мощность полезного сигнала, или уменьшив шум.

На рисунке 7 представлено применение теоремы Шеннона для витой пары, диаметром 0, 4 мм. Три отдельных точки соответствуют скоростям, которые могут быть достигнуты с помощью систем ADSL, использующих технологию DMT. Из данного графика видно, что для больших расстояний системы ADSL приближаются к теоретическому пределу. Для коротких расстояний запас по пропускной способности по пределу Шеннона возрастает.

    Рисунок 7. Теорема Шеннона.

Вывод Теорема Шеннона-Хартли ограничивает информационную скорость (бит/с) для заданной полосы пропускания и отношения сигнал/шум. Для увеличения скорости необходимо увеличить уровень полезного сигнала, по отношению к уровню шума.

Проблемы с модемамиМы имеем канал с известной полосой пропускания и отношением сигнал/шум. С одной стороны критерий Найквиста ограничивает максимальное число символов, которые возможно передать без ошибки. С другой стороны теорема Шеннона–Хартли ограничивает максимальное число бит, которые возможно передать без ошибки. Исходя из данных двух ограничений мы можем вычислить количество бит на символ, которое необходимо обеспечить для достижения максимальной (не обязательно оптимальной) скорости. Однако остается неясно, как реализовать необходимое количество бит в символе, т. е. возможны различные технологии модуляции.

    Затухание

На рис. 8 показано, что импульс, передаваемый по витой паре принимается на другой стороне с меньшей амплитудой.

    Рисунок 8. Затухание

Затухание в кабеле ограничивает расстояние, на котором можно использовать витую пару без регенераторов. На частотные характеристики витой пары существенное влияние оказывает поверхностный эффект, в результате которого токи высокой частоты текут в поверхностном слое проводника. В результате получается более сильное затухание на высоких частотах.

Рисунок 9. Зависимость затухания от частоты для симметричного кабеля.

Проблема может быть решена путем увеличения мощности передаваемого сигнала: Максимальная мощность сигнала ограничена в следствии возникновения эффекта переходных помех, таким образом принимаемый сигнал всегда имеет маленькую амплитуду.

Необходимо отметить, что для обеспечения электромагнитной совместимости, необходимо, чтобы системы ADSL не мешали функционированию радио передающих систем. Данное условие также накладывает ограничения на мощность передаваемого сигнала.

ADSL устройство должно работать как на короткой линии с затуханием 0 дБ, так и на длинной линии с затуханием в 55 дБ, поскольку неизвестно, на какой линии данное устройство будет установлено.

    Дисперсия импульса

Данная проблема заключается в следующем: форма импульса, приходящего, на удаленный конец отличается от исходной формы. На графике на рисунке 10 показаны изменения формы импульса, длительностью 2сек, возникающие после его передачи по кабелю различной длины без учета затухания. Как видно из рисунка, с ростом длины кабеля импульс все более и более расширяется, данный эффект получил название дисперсии.

    Рисунок 10. Отклик на импульс, посылаемый по каналу.

Данный эффект (в следствии частотной зависимости функции передачи по каналу) приводит к тому, что называется межсимвольной интерференцией (ISI). В линейных каналах, имеющих частотные ограничения и зависимые от частоты затухание и задержку, возникает дисперсия импульсов, которая приводит к ошибкам в процессе детектирования. Этот эффект сильнее всего сказывается на коротких импульсах, что приводит к ограничениям для высокоскоростных систем. ISI может быть частично компенсирована с помощью адаптивных канальных компенсаторов. Необходимо впрочем отметить, что компенсация представляет из себя усиление и, таким образом имеет пределы, связанные с качеством принимаемого сигнала (шум, …).

    Отражения

Отражения в кабеле могут возникнуть в следствии рассогласования приемопередатчика и изменения диаметра кабеля.

    Шум и интерференция

Здесь оговариваются наиболее важные источники шума и интерференции, которые оказывают влияние на медную витую пару.

    Белый шум

Белый шум имеет много причин появления и полностью подавить его практически невозможно. Это означает, что даже если изолировать все источники шума и интерференции все равно белый шум будет ограничивать производительность системы.

    Переходные помехи

Переходные помехи вносят наиболее серьезные ограничения в абонентский участок сети. Суть данного явления заключается в емкостной связи между парами кабеля. Переходные помехи могут быть на ближнем конце (Near End CROSSTalk– NEXT) и на дальнем конце (Far End CROSSTalk – FEXT). Они приведены на рисунке 11. NEXT определяются, как переходные помехи между принимающей и передающей парой на одном конце кабеля.

FEXT определяются как переходные помехи в приемнике в следствии влияния передатчика, работающего по другой паре кабеля на удаленном от приемника конце.

Необходимо отметить, что влияющая помеха при FEXT, в отличии от NEXT, проходя по линии связи, затухает также, как и передаваемый сигнал. Таким образом, в случае, если сигналы передаются в обоих направлениях, по одному кабелю NEXT будет значительно больше FEXT. Если сигналы используют общую полосу частот, например, в случае использования эхо компенсации, NEXT будет вносить наибольший вклад в переходные помехи. Также NEXT будет выше при использовании близко расположенных модемов. Это означает, что NEXT более важен в месте расположения ADSL -мультиплексора.

Рисунок 11. Переходные помехи на дальнем конце (FEXT) и ближнем конце (NEXT). Собственные переходные помехи

Помимо переходных помех, описанных ранее, существуют и так называемые собственные переходные помехи. В действительности данный тип помехи не является переходным, поскольку не является помехой между приемником и передатчиком. Данный тип помехи вызван не полным разделением направлений приема и передачи в дифсистеме, а также является следствием не идеального согласования приемника и передатчика. Затухание на линии может достигать 55 дБ, поэтому для того, чтобы принять сигнал с уровнем, более высоким, чем у собственной переходной помехи, дифсистема должна обеспечивать затухание не хуже, чем 55 дБ.

    Рисунок 12. Собственная переходная помеха.

Как и в случае NEXT, данная проблема существует, только при передаче и приеме сигналов в одном частотном диапазоне, например при использовании эхо компенсации.

    Радиочастотная интерференция

Сеть доступа подвергается действию широкого спектра радиочастотной интерференции (Radio Frequency Interference–RFI), например от длинноволновых или средневолновых широковещательных передатчиков (См. рисунок 13). Несмотря на то, что медная витая пара, как правило, хорошо симметрирована и поэтому мало подвержена данному явлению (Обычно RFI более подвержены сельские сети с воздушными кабелями), должны быть предусмотрены средства, защищающие системы передачи от RFI. Необходимо отметить, что исходя из требований по электромагнитной совместимости (Electro-Magnetic Compatibility - EMC) системы передачи (ADSL) не должны быть подвержены интерференции с радиопередающим оборудованием. Данный факт также накладывает ограничения на мощность, передаваемого по линии сигнала.

Важное преимущество одного из методов модуляции, используемых в ADSL - DMT заключается в том, что он удовлетворяет как требованиям по устойчивости к радиочастотной интерференции, так и создаваемым магнитным полям.

    Рисунок 13. Радиочастотная интерференция.
    Импульсный шум

Данное явление характеризуется редкими шумовыми выбросами большой амплитуды, причиной которых может быть коммутационные станции, импульсный набор, вызывной сигнал, близость железнодорожных станций, заводов и т. п. Характеристики импульсного шума зависят от типа используемой станции, и таким образом специфичны для каждой страны. Поскольку выбросы имеют острую форму, спектр импульсного шума ровный в диапазоне ADSL сигналов (максимальная частота ADSL сигнала составляет 1 МГц).

    1. 4. Решения ADSL проблем
    Разделение передаваемых и принимаемых данных

При использовании ADSL данные передаются по общей витой паре в дуплексной форме. Для того, чтобы разделить передаваемый и принимаемый поток данных существуют два метода: частотное разделение каналов (Frequency Division Multiplexing– FDM) и эхо компенсация (Echo Cancelation – EC) (смотри рисунок 14).

Рисунок 14. Разделение направлений передачи и приема данных.

    Частотное разделение каналов

При использовании данного механизма низкоскоростной канал передаваемых данных располагается сразу после полосы частот, используемой для передачи аналоговой телефонии. Высокоскоростной канал принимаемых данных располагается на более высоких частотах. Полоса частот зависит от числа бит передаваемых одним сигналом.

    Эхо компенсация

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.