Рефераты. Элективный курс по математике для классов спортивно-оборонного профиля

b>,

Где .

Эта формула выражает закон распределения Пуассона вероятностей массовых и редких событий. Имеются специальные таблицы, пользуясь которыми можно найти значения , если нам известны и к.

3.5 Математическое ожидание и дисперсия

Как известно закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Также для решения многих задач не нужно знать распределения случайной величины, а достаточно знать лишь некоторые обобщающие числовые хараткеристики этого распределения.

Одной из таких характеристик является математическое ожидание. Для более наглядного определения рассмотрим подход к этому понятию на конкретном примере.

Пусть имеется дискретная случайная величина Х, которая может принимать значения х1, х2, …, хn. Вероятности которых соответственно равны р1, р2, …, рn. Тогда математическое ожидание М(Х) случайной величины Х определяется равенством:

.

Если дискретная случайная величина Х принимает счетное множество всевозможных значений, то

,

Причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной

М(С)=С.

2. Постоянный сомножитель можно выносить за знак математического ожидания

М(СХ)=СМ(Х).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий

М(ХУ)=М(Х)М(У).

4. Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании

М(Х)=np.

Для непрерывных случайных величин дисперсию можно найти по следующей формуле:

.

На практике часто требуется оценить рассеяние возможных значений случайно величины вокруг ее среднего значения. Например в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена. Именно такие задачи решает дисперсия.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонений случайной величины от ее математического ожидания. Дисперсия обозначается, как D(x)

D(Х)=M[X-М(Х)]2.

Для вычисления дисперсии часто бывает удобно пользоваться следующей формулой:

Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания

D(Х)=M(X)2-[М(Х)]2.

Свойства дисперсии:

1. Дисперсия постоянной величины С равна 0

D(С)=0.

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

D(СХ)=С2 D(Х).

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин

D(Х+У)=D(X)+D(У).

4. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий

D(Х-У)=D(X)+D(У).

5. дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна n произведению числа испытаний на вероятности появления и не появления события в одном испытании:

D(Х)=npq.

Для оценки рассеяния всевозможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и другие величины.

Средним квадратическим отклонением величины Х называют квадратный корень из дисперсии

.

3.6 Вероятность попадания в заданный интервал

Очень часто интересует вопрос: какова вероятность, того что изучаемый признак находится в заданных границах. Например, вероятность того, что результат в беге на
100 м для группы испытуемых окажется в пределах 11,5 - 12,5 с.

Для этого пользуются функцией Лапласа:

P[x1<(X-м)<x2]=Ф()-Ф().

Решение задач

Задача 1. В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 р. и десять выигрышей по 1 р. Найти закон распределения случайной величины Х - стоимости возможного выигрыша для владельца лотерейного билета.

Решение. Напишем возможные значения Х: х1=50; х2=1; х3=0. Вероятности этих возможных значений равны: р1=0,01; р2= 0,1; р3=1-(0,01+0,1)=0,89.

Напишем исходный закон распределения:

Х

50

10

0

p

0,01

0,1

0,89

Контроль: 0,01+0,1+0,89=1

Задача 2. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что изделие в пути повредиться равна 0,0002. Найти вероятность того, что на базу придут 3 негодных изделия.

Решение. По условию n=5000, р=0,0002, к=3. Найдем :

=np=1

По формуле Пуассона искомая вероятность приближенно равна:

.

Задача 3. Найти дисперсию случайной величины Х, которая задана следующим законом распределения:

Х

1

2

5

p

0,3

0,5

0,2

Решение. Найдем математическое ожидание:

.

Найдем всевозможные значения квадрата отклонения:

.

Напишем закон квадрата отклонения:

[Х-М(Х)]2

1,69

0,09

7,29

p

0,3

0,5

0,2

По определению:

.

Используя формулу D(Х)=M(X)2-[М(Х)]2 можно найти дисперсию гораздо быстрее:

.

Задачи для самостоятельного решения

3.1

Вероятность поражения мишени при одном выстреле 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена 75 раз.

3.2

Линия связи, имеющая к каналов связывает два города, где n абонентов, каждый из которых пользуется телефоном в среднем 5 минут в час. Найти вероятность безотказного обслуживания абонентов.

3.3

В лотерее 40000 билетов, ценные выигрыши попадают на 3 билета. Определить: а) вероятность получения хотя бы одного выигрыша на 1000 билетов; б) сколько необходимо приобрести билетов, чтобы вероятность выигрыша была не менее 0,5.

3.4

Найти математическое ожидание дискретной случайно величины Х заданной законом распределения:

А)

Х

-4

6

10

P

0,2

0,3

0,5

Б)

Х

0,21

0,54

0,61

p

0,1

0,5

0,4

3.5

Дискретная случайная величина Х принимает три возможных значения

Х

4

6

х

p

0,5

0,3

р

Найти х и р, если М(Х)=8

3.6

Дискретная случайная величина имеет только 2 возможных значения х и у, причем x<y. Вероятность того что Х примет значение х 0,6. Найти закон распределения величины Х, если математическое ожидание и дисперсия известны: М(Х)=1,4, D(X)=0.24.

II Статистика.

Определение: Простой гипотезой будем называть любое предположение, однозначно определяющее распределение выборки Х.

Пусть даны r распределителей P1, …, Pr и пусть нам известно что Х есть выборка одного из этих распределений. Задача состоит в том, чтобы определить, к какому именно Р относится Х.

Определение: Нулевой называют выдвинутую гипотезу.

1.Проверка гипотезы о разности двух средних значений

Проверка гипотезы о разности между двумя средними арифметическими - одна из наиболее часто встречающихся задач исследовательской работы.

Рассмотрим следующий пример: Две группы велосипедистов использовали в соревновательном периоде два различных метода силовой подготовки. Первая группа весь объем силовых упражнений распределила на весь сезон. Вторая группа тот же объем использовала во второй половине сезона, а в первой совсем не применяла силовых упражнений. Эффективность методов тренировки оценивалась по приросту результатов на дистанции 500 м с места, которые оказались следующими (в секундах):

Первая группа (Х1): 1,0; 2,1; 1,2; 1,9; 0,9; 0,8; 2,0; 0,8; 1,5; 2,0.

Вторая группа (Х2): 0,8; 1,0; 1,3; 0,7; 0,7; 0,4; 0,9; 1,4; 1,5; 1,5.

Рассчитаем средние арифметические для каждой группы:

Таким образом, средний прирост спортивного результата в первой группе на 0,4 сек. Выше, чем во второй. Следует отметить, что по исходным данным группы были однородны. Очевидно, разность между средними арифметическими не говорит о том, что один метод тренировки эффективнее, чем другой. Даже если бы обе группы использовали одинаковые методы тренировки, средние арифметические почти наверняка были бы разными, так как прирост результатов зависти не только от методов тренировки, но и определяется некоторыми другими факторами, например, питанием спортсменов, занятостью в учебе или работе, болезнями и т.п. При не большом числе испытуемых эти факторы могли бы сложится более благоприятно, для какой то одной группы. Следовательно, задача состоит в том, чтобы установить, можно ли объяснить различие в среднем приросте результата случайностью или оно отражает тот факт, что один метод тренировки эффективнее, чем другой.

На языке математической статистики эта задача формулируется следующим образом. Прирост результатов для испытуемых первой группы рассматривается как случайная выборка из генеральной совокупности с параметрами и . Аналогично для второй группы существует генеральная совокупность с параметрами и . Требуется проверить нулевую гипотезу о том, что =. В математической статистике доказывается, что

,

где .

Если величина t окажется слишком большой, то нулевая гипотеза должна быть отвергнута, как малоправдоподобная. В этом случае надо взять альтернативную гипотезу Н1: ?

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.