Рефераты. Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах

p align="center">.

Перенесем последнее слагаемое в левую часть и воспользуемся (1)

. (3)

Таким образом, получили равенство (3), в точности совпадающее с (2).

Аналогично можно рассмотреть случаи другого расположения чисел a, c, b (их всего шесть вариантов). Учащиеся легко могут самостоятельно убедиться, что формула (2) оказывается верной во всех этих случаях, т. е. независимо от взаимного расположения чисел a, c, b.[7]

Выведенное свойство называется свойством аддитивности интеграла.

30. , .

Рассмотрим доказательство этих свойств на примерах задачи о работе переменной силы и задачи о давлении жидкости на стенку.

3.1. Пусть к материальной точке, движущейся по оси х, приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону. Под действием этих сил материальная точка переместилась из точки а в точку b, при этом работа каждой силы на этом отрезке вычисляется по формулам: и . Тогда общая работа, совершенная обеими силами равна

. (4)

С другой стороны, если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону, то их равнодействующая F(x) находится по формуле F(x)= F1(x)+F2(x). Работа этой силы равна

. (5)

В силу равенства левых частей в формулах (4) и (5), получаем равенство правых, т. е.

.

Нетрудно показать, что данное свойство выполняется для любого конечного числа сил, действующих на точку и направленных по одной прямой в одну сторону. Это свойство показывает, что интеграл суммы нескольких слагаемых разбивается на сумму интегралов отдельных слагаемых.

Если же к материальной точке, движущейся по оси х, приложены две силы F1(x) и F2(x), направленные по одной прямой, но в противоположную сторону, то их равнодействующая F(x) при F1(x)>F2(x) находится по формуле F(x)= F1(x)-F2(x). Тогда верно следующее равенство

.

3.2. Ранее был приведен метод введения интеграла, основанный на рассмотрении задачи о давлении жидкости на прямоугольную стенку бассейна с основанием а, в результате решения которой получена формула

, (6)

где а - величина постоянная, равная ширине стенки бассейна.

Разделим прямоугольную стенку бассейна на а прямоугольников с основанием, равным единице. Тогда весь бассейн также разделится на а равных частей, при чем давление на прямоугольную стенку с основанием, равным единице в каждой части будет вычисляться по формуле . Учитывая, что во всех частях давление одно и то же и всего частей а, то общее давление равно

. (7)

В силу равенства левых частей в формулах (6) и (7), получаем равенство правых, т. е.

.

Данное равенство можно обобщить на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b], т. е.

Выведенные формулы в пунктах 3.1 и 3.2 называются свойствами линейности интеграла.

40. Если на отрезке [a; b], то .

Докажем данное свойство с помощью задачи о массе стержня.

При введении понятия интеграла с помощью задачи о вычислении массы неоднородного стержня была получена формула

.

Как известно, плотность вещества - это физическая величина, показывающая, чему равна масса вещества в единице объема, следовательно, это величина неотрицательная. С другой стороны масса вещества есть также величина неотрицательная. Таким образом, получаем: если подынтегральная функция неотрицательна на рассматриваемом отрезке, то

.

Используемые в доказательствах свойств физические модели, во-первых, наглядны, во-вторых, при соответствующей методике введения понятия интеграла, данная методика введения свойств заставляет постоянно повторять пройденное, вспоминать выведенные при введении формулы. Все это удовлетворяет принципу прочности знаний и наглядности в обучении (приложение).

2.3. Физические модели при отработке техники интегрирования.

1. Использование свойств интеграла.

№1. Вычислите силу давления воды на вертикальный прямоугольный шлюз с основанием 18 м и высотой 6 м. [4]

Решение. Сила давления воды зависит от глубины х погружения площадки: P(x)=ax, где а - площадь площадки. Получаем

(т).

№2. Тело массой 1 движется с ускорением, меняющимся линейно по закону a(t)=2t-1. Какой путь пройдёт тело за 4 единицы времени от начала движения t=0, если в начальный момент его скорость равнялась 2?

Решение. Скорость тела в любой момент времени t вычисляется по формуле

v=v0+at.

Используя данные задачи, получаем:

.

№3. Тело брошено с поверхности Земли вертикально вверх с начальной скоростью v0. Какова наибольшая высота, достигаемая телом? [5]

Решение. Скорость тела в любой момент времени t движения равна разности начальной скорости и скорости gt, вызванной ускорением, определяемым силой тяжести: v=v0-gt. Движение вверх будет происходить при v=v0-gt>0, т. е. при . Таким образом, максимальная высота полета равна

.

2. Введение новой переменной.

№1. Задан закон изменения скорости движения материальной точки по прямой: (время t в секундах, скорость v в метрах в секунду). Какой путь пройдёт точка за 13 с от начала движения (t=0)?

Решение. В качестве новой переменной введем величину, стоящую в скобках. Назовем её z,

z=2t+1.

При этом надо также от дифференциала dt перейти к дифференциалу dz. Получим

dz=2dt, dt=dz/2.

Вычислим сначала неопределенный интеграл,

Таким образом,

м/c.

№2. Вычислить количество электричества, протекающее через цепь за промежуток времени [0,01; 1], если ток изменяется по формуле .

Решение. За элементарный промежуток времени протекает количество электричества

dq=I(t)dt.

В качестве новой переменной введем величину, стоящую в скобках.

.

Тогда dt=du.

Значит, общее количество электричества равно

.

№3. Точка движется по прямой. В начальный момент t=1 с её скорость равна 1 м/с, а затем уменьшается по закону . Найдите длину пути, пройденного точкой за 4 с от начального момента времени.

3. Интегрирование путем подстановки (внесением под знак дифференциала).

№1. Найти величину давления на полукруг, вертикально погруженный в жидкость, если его радиус равен R, а верхний диаметр лежит на свободной поверхности жидкости (рис.1); удельный вес жидкости равен г. [6]

Решение. Проведем горизонтальную полоску на глубине х. Сила давления жидкости на эту полоску равна

.

Таким образом,

.

Заметим, что 2xdx=dx2, отсюда

.

№2. Конец трубы, погруженной горизонтально в воду, может быть закрыт заслонкой. Определить давление, испытываемое этой заслонкой, если её диаметр равен 60 см, а центр находится на глубине 15 м под водой. [6]

2.4. Приложения интеграла в физике.

Рассмотрим несколько нетривиальных примеров применения интеграла в физике.

Нахождение силы.

№1. На прямой расположены материальная точка массы m и однородный стержень массы M и длины l. Точка удалена от концов стержня на расстояния c и c+l. Определить силу гравитационного притяжения между стержнем и точкой. [3]

Решение. Разобьем отрезок [c; c+l] на большое число отрезков. Если отрезки эти малы, то массу каждого из них можно считать точечной и силу гравитационного притяжения между таким отрезком и массой m вычислять по закону всемирного тяготения. Если длина отрезка равна Дх, а расстояние его от начала координат равно х, то сила гравитационного притяжения равна

Дх.

Суммируя полученные для каждого отрезка значения силы гравитационного притяжения, мы получим представление искомой силы в виде суммы тем более точное, чем мельче отрезки, на которые мы разбивали отрезок [c; c+l]. В пределе получим

.

№2. С какой силой полукольцо радиуса r и массы М действует на материальную точку массы m, находящуюся в его центре? [3]

Нахождение кинетической энергии.

№3. Вычислить кинетическую энергию диска массы М и радиуса R, вращающегося с угловой скоростью щ около оси, проходящей через его центр перпендикулярно к его плоскости. [6]

Решение. Масса кругового кольца толщины dr, находящегося на расстоянии r от центра диска, равна 2рсrdr, где - поверхностная плотность. Линейная скорость х=щr кольца. Следовательно, его кинетическая энергия будет:

.

Поэтому кинетическая энергия диска равна

.

№4. Стержень АВ вращается в горизонтальной плоскости вокруг оси ОО' с угловой скоростью щ=10р рад/с. По-перечное сечение стержня S = 4 см2, длина его l = 20 см, плотность материала, из которого он изготовлен, г= 7,8 * 103 кг/м3. Найти кинетическую энергию стержня. [3]

Решение. Кинетическая энергия тела, вращающегося вокруг непод-вижной оси, равна , где щ - угловая скорость, а J - момент инерции относительно оси вращения.

Момент инерции стержня относительно оси равен Sгl2dl , отсюда кинетическую энергию стержня можно найти по формуле:

(Дж).

№5. Треугольная пластинка, основание которой а = 40 см, а высота h = 30 см, вращается вокруг своего основания с по-стоянной угловой скоростью щ=5р рад/с. Найти кинетическую энергию пластинки, если толщина ее d = 0,2 см, а плотность материала, из которого она изготовлена, г= 2,2 * 103 кг/м3. [3]

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.