Рефераты. Измерение геометрических величин в курсе средней школы

изучении темы «Объемы тел» в курсе стереометрии прослеживается аналогия с темой «Площади фигур» и распределение учебного материала такое: простое тело - объем тела как величина - объем прямоугольного параллелепипеда - объем треугольной призмы - объем призмы - тела, имеющие равные объемы - объем полной треугольной пирамиды - объем произвольной полной пирамиды - объем усеченной треугольной пирамиды - объем произвольной усеченной пирамиды - объемы подобных тел - объем тел вращения.

Рассмотрим более подробно методику изложения темы «Площади фигур»

Перед введением понятия «простые фигуры» учащимся предлагается по готовым чертежам назвать: простую ломаную, замкнутую ломаную, простую замкнутую ломаную, выпуклый многоугольник, плоский треугольник, плоский пятиугольник. Напомним, что из определения треугольника как фигуры состоящей из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки следует, что он должен представляться как «скелет», «каркас»! Плоский треугольник - конечная часть плоскости, ограниченная треугольником. Выпуклый многоугольник - многоугольник, который лежит в одной плоскости относительно любой прямой, содержащей его сторону. Плоским многоугольником называется конечная часть плоскости, ограниченная многоугольником. Простая замкнутая ломаная называется многоугольником. После этого дается определение:

Геометрическую фигуру будем называть простой, если ее можно разбить на конечное число плоских треугольников. Примером простой фигуры может служить плоский выпуклый многоугольник, который разбивается на плоские треугольники диагоналями, выходящими из одной вершины.

«Площадь простой фигуры - это положительная величина, численное значение которой обладает следующими свойствами:

1) равные фигуры имеют равные площади;

2) если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей ее частей;

3) площадь квадрата со стороной, равной единице измерения, равна единице;

В таком определении новой величины использован аксиоматический подход. С помощью свойств описана аддитивность площади простой фигуры, определена мера (единица измерения) площади. Первое свойство площади определяет термин «равновеликие». Если фигуры равны, то равны и их площади, однако обратное утверждение не всегда верно.

С формулами площадей некоторых фигур учащиеся познакомились в курсе арифметики. Измеряя площади при помощи памятки, школьники познакомились с оценкой ее по недостатку и по избытку. И таким образом они уже подготовлены к восприятию вывода формулы площади прямоугольника.

Первоначально доказываем следующее свойство: площади двух прямоугольников с равными основаниями относятся как их высоты.

а) Прямоугольники ABCD и AB1C1D имеют равное основание AD. Пусть S и S1 - их площади. Разобьем сторону АВ на n равных частей, длина одной части равна АВ/n. Пусть m - число точек деления, лежащих на стороне АВ1. Тогда:

(АВ*n)/m ? AB1/AB ? AB/n

Разделив это неравенство почленно на АВ, получим:

m/n ? AB1 ? m/n + 1/n

б) Проводим через точки деления прямые, параллельные АД. Получим n равных треугольников со сторонами АД и АВ*1/n, площади которых (по св-ву 1) равны и принимают значение S*1/n. Поэтому, площадь АВСД выражается неравенством:

(S/n)*m<=S1<=(S/n)(m+1).

Разделив почленно на S, получаем:

m/n<=S1/S<=m/n +1/n

в) Отношение АВ1/АВ и S1/S удовлетворяют одним и тем же неравенствам, причем числа m/n и m/n+ 1/n отличаются на величину 1\n. При сколь угодно больших n значение 1/n становится очень малым, а это возможно только тогда, когда числа равны. Итак:

S1/S=AB1/AB, ч. т. д.

Для вывода формулы площади прямоугольника воспользуемся только что доказанным свойством по отношению к квадрату, со стороной 1 и прямоугольником со сторонами 1 и а и а и в. Получаем:

S1/1=a/1; S/S1=в/1 => S1=а, S=S1в.

Следовательно:

S=а*в.

VII.Площади подобных фигур.

Площади подобных фигур относятся как квадраты их соответствующих линейных размеров.

При доказательстве этого утверждения используют понятие простой фигуры, определение подобных фигур. Если фигура разбивается на простые треугольники, площади которых обозначим через , а фигура - на треугольники, площади которых и фигуры и подобны с коэффициентом , то линейные размеры треугольников в раз изменены, по отношению к размерам треугольников , то: и т. д., поэтому:

VIII. Площадь круга.

Круг - плоская фигура, но ее нельзя разбить на простые треугольники. Поэтому, такая фигура имеет площадь , если существуют содержащие её простые фигуры и содержащиеся в ней простые фигуры с площадями, как угодно мало отличающимися от .

При проведении уроков по теме «Площадь фигур» вывод общих формул должен закрепляться на частных примерах. Изложение теоретического материала должно быть максимально сокращено (в разумных пределах), что позволило бы сэкономить время для решения более сложных задач. (Возможно проведение уроков-лекций для изложения теории). Желательно проводить самостоятельные работы, как обучающего, так и контролирующего характера по каждому из изучаемых случаев.

Задача 1.

а) Разделите данный треугольник на три равновеликие части прямыми, проходящими через одну вершину.

B

A B1 D B2 C

б) Разделите данный параллелограмм на три равновеликие части прямыми, проходящими через одну вершину.

B C

A K B1 D

Аналогично: Поэтому точки и делят соответственно отрезки и в отношении 2:1 от вершин и соответственно.

Задача 2.

Докажите, что стороны треугольника обратно пропорциональны его высотам, то есть:

. Так как получаем:

что требовалось доказать.

Задача 3.

Докажите, что среди всех параллелограммов с данными диагоналями наибольшую площадь имеет ромб.

M B C

A K D

1-ый способ.

Если - ромб, то , то есть . Наибольшее значение произведения зависит от наибольшего значения , которое достигается при , если , то . Следовательно, площадь ромба наибольшая среди всех площадей параллелограммов с данными диагоналями.

2-ой способ.

Составим функцию, выражающую площадь параллелограмма:

при .

Так как - наименьший угол, образуемый диагоналями при пересечении, то и будет точкой максимума, следовательно: ; и этот параллелограмм - ромб.

Задача 4.

Прямая, перпендикулярная высоте треугольника, делит его площадь пополам. Найдите расстояние от этой прямой до вершины треугольника, из которой проведена высота, если она равна .

B

A D C

- трапеция, то есть подобен

Так как для подобных треугольников их площади относятся как квадраты соответствующих линейных размеров, то:

Существуют различные методические подходы к изучению вопросов измерения геометрических величин в курсе стереометрии.

Для вывода формулы объема, могут быть использованы:

1. Принцип Кавальери: объемы (или площади) двух тел (фигур) равны, если равны между собой площади (длины) соответствующих сечений, проведенных параллельно некоторой данной плоскости (прямой).

2. Формула Симпсона:

.

Пусть промежуток [a,b] разбит на n частейных промежутков [xi, xi+1] длины , при этом n считается чётным числом, и для вычисления интеграла по промежутку [x2k, x2k+2] используется приведенная формула:

.

Принципиальным моментом в теории объемов тел является обоснование формулы для учащихся является достаточно трудным и сложным. Структурная сложность доказательства подсказывает, что при его изучении целесообразно воспользоваться приёмами выделения логической структуры доказательства (разбиения доказательства на отдельные шаги, составление логико-структурной схемы доказательства и т.д.). Наличие в доказательстве трудных для понимания рассуждений говорит о целесообразности использования приёмов конкретизации, моделирования и т.д.

Структура доказательства формулы объёма прямоугольного параллелепипеда:

1. устанавливается величина отношения высот двух параллелепипедов с общим основанием;

2. устанавливается величина отношения объёмов выбранных параллелепипедов;

3. сравнение полученных значений отношений;

4. вывод формулы объёма прямоугольного параллелепипеда, применяя доказанное свойство к единичному кубу и параллелепипедам с измерениями: a,1,1; a,b,1; a,b,c.

При решении задач учащиеся иногда “путают” свойства прямого и прямоугольного параллелепипедов, неправильно указывают их диагональное сечение и т.п. Более углубленное изучение этих понятий на этапе их введения обеспечивает применявшаяся ранее методическая схема:

1. проанализировать эмпирический материал;

2. математизировать эмпирический материал - построить определение;

3. составить алгоритм распознавания понятия;

4. включить понятие в систему понятий.

Задача № 5.

Грани параллелепипеда - равные ромбы со стороной а и острым углом 600. Найдите объем параллелепипеда.

.

? AA1O: ; Из ? AA1K: .

Из ? AOK: ; Из ? AA1O: ;

Из ? KA1O:

.

Ответ: .

Заключение

Построение строгой теории измерения геометрической величины в школьном обучении наталкивается на серьезные трудности. Это не означает отказа в школьном курсе от всякой теории измерения геометрических величин. Главное - стремление к строгости не должно быть самоцелью, но не следует скрывать от учащихся вынужденных логических пробелов. Например, площадь многоугольника определяется как сумма площадей треугольников, на которые его можно разбить. Естественно возникает вопрос, получим ли то же самое число, если разобьем данный многоугольник на треугольники другим способом и сложим площади треугольников разбиения. В школе не изучается теорема о независимости суммы площадей треугольников разбиения от способа разбиения, но об её существовании следует сообщить учащимся о существовании такого факта.

Литература

1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае»,1997г.

2. Н.М. Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990г.

3. Г. Фройденталь «Математика как педагогическая задача»,М., «Просвещение», 1998г.

4. Н.Н. «Математическая лаборатория», М., «Просвещение», 1997г.

5. Ю.М. Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999г.

6. А.А. Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000г.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.