Рефераты. Методика преподавания курса "Матричные игры"

p align="center">Занятие №2:Графоаналитический метод решения матричных игр

Тип урока: урок контроль, урок изучения нового материала.

Вид урока: Лекция.

Продолжительность: 2 часа.

Цели:1) Изучить новый метод решения матричных игр.

2) Научить пользоваться программой Maple при решении матричных игр графоаналитическим методом.

1 этап: дать краткое описание графоаналитического метода.

2 этап: показать данный метод на примерах.

3 этап: закрепить новый материал и дать домашнее задание.

Ход занятия.

1 этап. Для некоторых классов матричных игр практический интерес представляет графоаналитический метод. Этот метод состоит из двух частей. С начало в матричной игре графически выявляются качественные особенности решения, затем полная характеристика решения находиться аналитически.

Данный метод решения применяется в тех задачах, в которых у одного из игроков ровно две стратегии.

В основе этого метода лежит утверждение, что max min f (x,y) = min max f (x,y) = Vв.

2 этап. Рассмотрим данный метод на задаче под названием «орлянка»

Пример 6.1: Два игрока независимо друг от друга называют числа, если оба числа имеют одинаковую четность, то один получает рубль, если разные, то рубль получает второй.

Решение: Данная игра представлена матрицей А

Здесь игрок 1 и 2 имеет две чистые стратегии. Решаем игру с позиции первого игрока.

Пусть его стратегия х = (б, 1-б), 0 ?б?1.

Вычислим хА=(б, 1-б)(1 -1)= (б- (1-б), -б+1-б)=(2б-1, 1-2б). (-1 1)

Обозначим f2(б)=2б-1 и f2(б)=1-2б.

Найдем max min (f1 (б), f2 (б))= max( min(2б-1, 1-2б)).

Для нахождения максимина приведем графическую иллюстрацию (1)

Вначале для каждого б Ђ [0,1] найдем min(2б-1, 1-2б). На рисунке (1) такие минимумы для каждого б Ђ [0,1] образуют ломанную - нижнюю огибающую MPQ. Затем на огибающей находим наибольшее значение, которое будет в точке P. Эта точка достигает при б Ђ [0,1], которое является решением уравнения f1 = f2 , т.е. 2б-1= 1-2б. Здесь б=1/2. Вторая координата точки P будет 2*1/2-1=0. итак P(1/2, 0). В смешанном расширении данной игры max( min(2б-1, 1-2б))=0.

Максиминная стратегия первого игрока хн = (б, 1-б)=(1/2, 1/2). По аналогичной схеме найдем минимаксную стратегию второго игрока. Его стратегию обозначим y=(в, 1-в), 0?в?1.

Вычислим Аy=( 2в-1, 1-2в).

Обозначим f1(в)= 2в-1, f2(в)= 1-2в

Найдем min max (f1(в), f2(в))= min (max (2в-1, 1-2в)).

Проведем геометрическую иллюстрацию на рисунке 2.

Для каждого в€[0,1] найдем min(2в-1, 1-2в).

На рисунке (2) такие минимумы для каждого в Ђ [0,1] образуют ломанную - верхнюю огибающую RST. Затем на огибающей находим наименьшее значение, которое будет в точке S. Координаты точки S(1/2,0).

В смешанном расширении данной игры min (max (2в-1, 1-2в))=0.

YВ=( в, 1-в)=(1/2, 1/2) и выполняется условие, что

VH = max min аij = min max аij = Vв. Значит цена игры V* =0 и седловая точка равна (х*, у*) = ((1/2, 1/2), (1/2, 1/2)).

Ответ: (х*, у*)=((1/2, 1/2), (1/2, 1/2)), V* =0.

3 этап. Учитель повторяет последовательность решения данной задачи графоаналитическим методом. Дает домашнее задание.

Домашнее задание: придумать каждому ученику 1 задачу, чтобы она решалась графоаналитическим методом.

Задача:

Графоаналитическим методом найти цену и седловую точку матричной игры, заданную матрицей выигрыша первого игрока.

> with(simplex):

> A := Matrix(4,4, [[4, 2,3,-1],[-4,0,-2,2],[-5,-1,-3,-2],[-5,-1,-3,-2]]);

>

C:={ A[1,1]*x+A[1,2]*y+A[1,3]*z+A[1,4]*t <=1,

A[2,1]*x+A[2,2]*y+A[2,3]*z+A[2,4]*t <=1,

A[3,1]*x+A[3,2]*y+A[3,3]*z+A[3,4]*t

<=1,A[4,1]*x+A[4,2]*y+A[4,3]*z+A[4,4]*t <=1};

Ш X:=maximize(f,C ,NONNEGATIVE );

> f_max:=subs(X,f);

>

> XX:=X*V;

>

Ш C1:={ A[1,1]*p1+A[2,1]*p2+A[3,1]*p3+A[4,1]*p4 >=1,

Ш A[1,2]*p1+A[2,2]*p2+A[3,2]*p3+A[4,2]*p4 >=1,

Ш A[1,3]*p1+A[2,3]*p2+A[3,3]*p3+A[4,3]*p4

Ш >=1,A[1,4]*p1+A[2,4]*p2+A[3,4]*p3+A[4,4]*p4 >=1};

Ш Y:=minimize(f1,C1 ,NONNEGATIVE);

>

>

Ш YY:=V*Y;

>

> VV:=XX*V*L;

Занятие №3 Решение систем неравенств графическим методом

Тип урока: урок изучения нового материала.

Вид урока: Лекция, урок решения задач.

Продолжительность: 2 часа.

Цели:1) Изучить графический метод.

2) Показать применение программы Maple при решении систем неравенств графическим методом.

3)Развить восприятие и мышление по данной теме.

План занятия: 1 этап: изучение нового материала.

2 этап: Отработка нового материала в математическом пакете Maple.

3 этап: проверка изученного материала и домашнее задание.

Ход занятия.

1 этап: Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти. Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ?, либо min(f)= -?.

2. Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что f(C)=f(4;1)=19 - максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -? до +? прямые f=a смещаются по вектору нормали Вектор нормали имеет координаты (С1;С2), где C1 и C2 коэффициенты при неизвестных в целевой функции f=C1?X1+C2?X2+C0.. Если при таком перемещении линии уровня существует некоторая точка X - первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум f на множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а>-? прямая f=a пересекает множество допустимых решений, то min(f)= -?. Если это происходит при а>+?, то max(f)=+ ?.

В нашем примере прямая f=a пересевает область ABCDE в точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.

2 этап.

Задача:

Решить графически систему неравенств. Найти угловые решения.

x1+ 2x2 <=10

2x1+x2 <=10

x1+3x2>=3

5x1-x2 >=-5

x1+6x2>=6

x1>= 0, x2>=0

> restart;

>

>

>

>

>

>

>

>

>

>

>

>

>

> with(plots);

> with(plottools);

>

> S1:=solve( {f1x[1, 1] = X6[1, 1], f2x[1, 1] = X6[1, 2]}, [x, y]);

>

>

>

>

>

>

>

>

>

Ответ: Все точки Si где i=1..10 для которых x и y положительна.

Область, ограниченная данными точками: (54/11,2/11) (5/7,60/7) (0,5) (10/3, 10/3)

3 этап. Каждому ученику даётся один из 20 вариантов, в котором ученику предлагается самостоятельно решить неравенство графическим методом, а остальные примеры в качестве домашнего задания.

Занятие №4 Графическое решение задачи линейного программирования

Тип урока: урок изучения нового материала.

Вид урока: Лекция + урок решения задач.

Продолжительность: 2 часа.

Цели: 1) Изучить графическое решение задачи линейного программирования.

2) Научить пользоваться программой Maple при решении задачи линейного программирования.

2) Развить восприятие, мышление.

План занятия: 1 этап: изучение нового материала.

2 этап: Отработка нового материала в математическом пакете Maple.

3 этап: проверка изученного материала и домашнее задание.

Ход занятия.

Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.

Каждое из неравенств задачи линейного программирования (1.2) определяет на координатной плоскости некоторую полуплоскость (рис.2.1), а система неравенств в целом - пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений (ОДР). ОДР всегда представляет собой выпуклую фигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлена выпуклым многоугольником, неограниченной выпуклой многоугольной областью, отрезком, лучом, одной точкой. В случае несовместности системы ограничений задачи (1.2) ОДР является пустым множеством.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.