Рефераты. Позакласна робота з математики у молодших класах

. Кількість граючих. Кожна гра потребує визначеного мінімальної чи максимальної кількості граючих. Це потрібно враховувати при організації гри.

3. Які матеріали і посібники потрібні для гри.

4. Як з найменшою затратою часу ознайомити дітей з правилами гри.

5. На який час повинна бути розрахована гра, щоб діти побажали ще раз повернутися до цієї гри.

6. Як забезпечити найбільш повну участь дітей у грі.

7. Як організувати спостереження за дітьми, щоб вияснити, чи зацікавила їх гра.

8. Які зміни можна внести у гру, щоб підвищити інтерес і активність дітей.

9. Як можна використати основу гри, щоб застосувати в ній другий математичний матеріал.

10. Які висновки потрібно повідомити дітям в завершенні, після гри (кращі моменти гри, найбільш активні учасники, недоліки гри і т. д.).

Багатьма іграми цікавляться не тільки діти, але й дорослі, цікавляться вчені - математики. А в 40-х роках зявилась навіть самостійна вітка математики під назвою теорія гри. Тому слід відмітити, що в деяких цікавих іграх зустрічаються прості елементи тих складних ігор, які вивчає математична теорія ігор.

В роботі над підвищення інтересу дітей до математики необхідно, щоб цей інтерес до неї бачили учні і з боку вчителя. Важче визвати інтерес дітей до навчального предмету, якщо вони не бачать прикладів зацікавленості даною казкою, прикладів, які б переконали їх в тому, що взагалі є люди, які з пристрастю віддаються такій складній науці, як математика, і що ними можуть бути не тільки дорослі, а і діти.

1.5 Про логічні вправи для молодших учнів.

Логічні вправи являють собою один із засобів, з допомогою якого проходить формування у дітей правильного мислення.

Логічні вправи дозволяють на дохідливому для дітей математичному матеріалі, з опорою на життєвий досвід побудувати правильне судження без попереднього теоретичного освоєння самих законів і правил логіки. Правильність судження дітей забезпечується тим, що на стороні її знаходиться вчитель - організатор і керівник позакласних занять. Під його керівництвом, шляхом вправ учні практично знайомляться із застосуванням законів і правил логіки, з застосуванням логічних прийомів.

На позакласних заняттях в процесі логічних вправ діти практично порівнюють математичні об'єкти, виконують найпростіші види аналізу і синтезу, установлюють зв'язок між родовими і видовими поняттями.

Аналіз - це логічний захід, який складається в розумовому розчленуванні математичного об'єкту на складові елементи, кожний із яких потім може досліджуватись окремо, як частина розчленованого цілого, щоб виділені в ході аналізу елементи зєднати з допомогою другого логічному прийому - синтезу - в ціле, збагачене новими знаннями.

Взаємозв'язок між видовими і родовими поняттями відображає в свідомості об'єктивів існуючий взаємозв'язок роду і виду в природі і суспільстві. Родове поняття - це поняття, яке виражає суттєві признаки цілого класу об'єктів, які є родом якогось виду. Родове поняття включає певні видові поняття, одне і теж поняття ( за включенням одиничних і категорій - гранично широких понять ) може бути як видовим, так і родовим одночасно в залежності від того, по відношенню до якого поняття воно розглядається. Так, наприклад, поняття “чотирикутник” є родовим по відношенню до всіх “прямокутників” і в той же час - видовим поняттям по відношенню до поняття “багатокутник”.

В математиці велике значення надається застосуванню учнями відношень рівності і нерівності, відношень порядку і їх властивості.

Найчастіше логічні вправи не потребують рахунку, а тільки заставляють дітей виконувати правильне судження і приводить нескладні докази. Самі ж вправи носять цікавий характер, тому вони допомагають виникненню інтересу дітей до процесу мислення. А це одна із кардинальних задач навчально - виховного процесу в школі.

Внаслідок того, що логічні вправи являють собою вправи в розумовій діяльності, а мислення молодших учнів в основному конкретне, образне, то на позакласних заняттях в зв'язку з цими вправами необхідно користуватись наочністю: малюнки, креслення, короткі умови задач, записи термінів - понять і т. д.

Позакласні заняття в основі основного матеріалу можуть мати тільки логічні вправи. Як основний матеріал логічні вправи можуть слугувати в окремих випадках і при роботі математичного гуртка. Тому, що вони для дітей є не менш цікавими, ніж комбіновані заняття на другому математичному матеріалі.

Народні загадки завжди служили і служать захоплюючим матеріалом для роздумів. В загадка завжди вказуються певні ознаки предмета, по яким відгадується і сам предмет. Загадки - це свого роду логічні задачі на виявлення предмету по деяким його ознакам. Ознаки можуть бути різними. Вони характеризують як якісну, так і кількісну сторону предмета. Для позакласних занять по математиці підбираються такі загадки, в яких головним чином по кількісним ознакам наряду з другими знаходиться сам предмет. Виділення кількісної сторони предмету, а також находження предмету по якісних ознаках - корисні і цікаві логічно - математичні вправи.

3. Види позакласної роботи з математики.

2.1 Цікава математика в хвилини відпочинку і на групових заняттях після уроків.

Давно встановлено, що окремі завдання з цікавої математики - математичні ігри можуть завдавати дітям також задоволення, так само служити засобом розумового відпочинку, як і елементи цікавого матеріалу, пов'язані зі спортом, літературою та іншими областями науки, мистецтва. Потрібно тільки вміло підбирати математичні завдання, щоб вони викликали інтерес у молодших учнів, або викликати інтерес до математики - це головна мета , до якої ми прямуємо в зв'язку з задачею підвищеного рівня процесу навчання математики. Для розвязку цієї задачі корисно використовувати хвилини цікавої математики. З них звичайно зароджується інтерес до позакласних занять з математики, бажання брати участь в крукових роботах, в випусках газет і в інших видах робіт по математиці.

Проводити ці хвилини можна в окремих моментах під час прогулянок з групою учнів, хвилини відпочинку під час екскурсії на природу та ін.

Так як, мова йде про хвилини цікавої математики, то для збудження і підтримання інтересу до завдань останні повинні задовольняти наступні умови:

1. бути не схожими на звичайні математичні завдання, запропоновані на уроках;

2. смисл завдань повинен бути зрозумілим дітям;

3. рішення завдань повинно бути доступним кожному з присутніх учнів;

4. відповіді повинні отримуватись швидко, якщо необхідні обчислення, то вони повинні виконуватися тільки усно.

Хвилини цікавої математики проводяться епізодично. Вони можуть плануватися вчителем в зв'язку з поставленою метою, наприклад, викликати в дітей інтерес до організації математичного кружка, до випуску газети, тощо. Приведемо подібні запитання, задачі, завдання, які можна запропонувати молодшим учням в відповідні періоди їх навчання.

Діти люблять незвичайні задачі в віршах. Тому в звичну для цього хвилину вчитель може почати бесіду так: “Діти, ви знаєте вірш С.Я.Маршака “Багаж”?

Звичайно серед дітей знайдуться такі, які знають його напамять. Після цього запропонувати прочитати його хором. А потім сказати:”Тепер послухайте задачу:

Дама здавала в багаж;

Диван, чемодан, саквояж,

Картинку, корзинку, картонку

І маленьку сабачонку.

.............................................

Але тільки пролунав дзвінок,

Втікло з вагона щеня.

Діти, порахуйте швидше,

Скільки залишилось речей?

З цікавістю діти беруться відгадувати прості ребуси. При цьому необхідно запропонувати не будь - які ребуси, а тільки ті, які мають, визначений зв'язок з математикою: або в його зображенні зустрічаються математичні знаки, або в відповідях утримується математичний термін, або має місце першої і другої ознаки одночасно. Ребуси можна раніше зобразити на аркушах паперу. Тоді в любий час вчитель може запропонувати дітям їх для відгадування. Наприклад, вчитель каже: “ Діти, відгадайте, які слова тут написані за допомогою букв та інших знаків:

Пі2л , 7я, мі100, 100лиця.

Діти завжди з зацікавленням відгадують загадки. Тут також слідує звернути увагу на те, що загадки повинні мати якісь математичні елементи. Частіше всього таким елементом є число, яке утримується в загадці і служить одним із ознак, по якому відбувається шукання відповіді на цю загадку. В інших загадках можуть зустрічатися математичні відношення (“рівність”, “більше”, “менше”) або відповіддю служить термін

Пов'язаний з математикою.

Наприклад:

1) Дім без вікон та дверей, як зелений сундучок,

В ньому 6 кругленьких діточок.

Називається... ( стручок)

2) Що це за 7 братів: роками рівні, іменами різні. (дні неділі)

Корисно буває запропонувати і задачі - жарти:

1) Росте 4 берези. На кожній березі по 4 гілки. На кожній гілці є по 4 яблука. Скільки всього яблук? ( На березі яблука не ростуть)

2) 4 мишки гризли скоринку сиру. Підкралась кішка і схопила 1 мишку. Скільки мишок продовжувало гризти скоринку сиру? ( Ніскільки, всі миші порозбігалися)

В вільні хвилини діти з задоволенням можуть приймати участь в якій несуть грі. Наприклад: можна провести з невеликою групою дітей гру “Арифметичний квач”. Беручи участь в грі, діти закріплюють в памяті склад числа 10. гра заключається в наступному. Діти становляться в коло. Один учень є ведучим і становиться в центрі кола. У дітей, які стоять до кола, прикріплені картки з числами від 0 до 10. це в тому випадку, коли крім ведучого, беруть участь в грі ще 11 чоловік. Потім учень - ведучий голосно називає число, наприклад8. тоді учень який стоїть в колі і має число 8 , оббігає коло, щоб доторкнутися до учня з числом 2, яке доповнює 8 до 10. щоб не дати, коли його “заквачують”, учень з 2 повинен швидко здогадатися, що доповнення до 10 число знаходиться в нього, оббігти коло в ту саму сторону, що і 8 і стати на своє місце. Якщо 8 не “ заквачує” 2, то учень з 8 становиться в коло, а минулий ведучий на його місце. При цьому минулий ведучий одночасно отримує від нового ведучого і картку з числом 8 , прикріплює до себе на грудях.

Якщо 8 “заквачила” 2 , то учень з числом 2 становиться ведучим, віддаючи свою картку минулому ведучому.

Примітка 1: Якщо ведучий скаже голосно число 10, то, крім учня, який має на картці число 10, повинен оббігати коло і учень з числом 0.

Примітка 2: Якщо учнів, які приймають участь в грі, менше 12, то звичайно не беруться числа 10, 9, 8 і т. д. І доповнення проводиться до найбільшого з прикріплених на картках чисел. Наприклад, в грі разом з ведучим беруть участь 9 чоловік. Тому в колі будуть стояти 8 учнів з прикріпленими числами від 0 до7. в процесі гри доповнення проводиться до числа 7.

Примітка 3: Якщо граючих виявилося більше 12, то доповнення можна вичислити і до більшого числа. Якщо, наприклад, граючих 15, то доповнюють до числа 14.

З учнями 2 і 3 класів можна провести гру “Знай таблицю множення”. Зміст гри наступний. Учасники стають в одну шеренгу. До грудей кожного з них прикріпляються номера від 1 до 9 (послідовно, разом з ведучим в грі можуть приймати участь 10 чоловік). Ведучий називає будь - яке утворення з таблиці множення, наприклад 35. число 35 утворилось від множення 5 і 7 . отже, з шеренги повинні вибігти ті діти, у яких приколені номера 5і 7 , і, добігши до раніш вказаного місця, повернутися в шеренгу. Хто скоріше повернеться на своє місце, той виграє. Він отримує прапорець. Якщо ведучий сказав таке число, яке є добутком двох різних пар чисел ( наприклад, 24 = 6* 4 та 24 = 8*3 ), то з шеренги вибігають всі четверо. Учень, який виграв першим 2 прапорця, становиться ведучим, а ведучий займає його місце. Потім ведучого змінює наступний, отримавши 2 або 3 прапорця. Всі учні, які отримали прапорці, вважаються гарно знаючими таблицю множення.

При проведенні хвилин цікавої математики можна запропонувати будь - яку вправу з рахівними паличками, тощо.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.