Если учащиеся с I класса усвоили, что действия можно производить только над числами, полученными при измерении одной и той же мерой, то они поймут, почему необходимо приведение к общему знаменателю: это фактически приведение к общей мере. В самом деле, когда мы складываем, допустим, ? и ?, это означает, что в одном случае единицу разделили на 3 части и взяли одну из них, в другом - на две части и тоже взяли одну из них. Очевидно, что это разные «меры». Складывать их нельзя. Для сложения необходимо привести их к единой «мере» - к общему знаменателю.
Наконец, если учащиеся усвоят, что величины можно измерять различными мерами и поэтому их числовая характеристика может быть разной, то они не будут испытывать трудностей и при движении по разрядной сетке системы счисления: от единицы - к десяткам, от десятков - к сотням, тысячам и т.д. Для них это будет выступать всего лишь как переход к измерению все большими и большими мерами: измеряли единицами, а теперь меру увеличили в 10 раз, поэтому то, что обозначалось как 10, теперь стало обозначаться как 1. Собственно, только величиной меры и отличается один разряд системы счисления от другого. В самом деле, три плюс пять всегда будет восемь, но это может быть и восемь сотен, и восемь тысяч и т.д. То же самое и при десятичных дробях. Но в этом случае мы меру не увеличиваем в 10 раз, а уменьшаем, поэтому получаем три плюс пять тоже восемь, но уже десятых, сотых, тысячных и т.д.
Таким образом, если учащимся раскрыть все эти «секреты» математики, то они легко будут понимать и усваивать ее. Если же этого не сделать, то учащиеся будут брать памятью, будут механически производить различные арифметические действия, не понимая их сути и, следовательно, не развивая своего математического мышления. Таким образом, формирование уже самых начальных знаний должно быть организовано так, чтобы это было одновременно и формированием мышления, определенных умственных способностей учащихся. Если этого нет, то усвоение знаний и умений оказывается формальным: учащиеся выполняют действия, совсем не понимая их специфического математического смысла.
Аналогичное положение и с другими предметами. Так, успешное овладение русским языком также невозможно без овладения специфическими языковыми приемами мышления. Нередко учащиеся, изучая части речи, члены предложения, не понимают их языковой сущности, а ориентируются на их место в предложении, или учитывают лишь формальные признаки. В частности, учащиеся не всегда понимают суть главных членов предложений, не умеют их узнавать в несколько непривычных для них предложениях. Попробуйте дать ученикам средних и даже старших классов предложения типа «Ужин только что подали», «Басни
Крылова читали все», «Листовки разносит ветром по городу». Многие ученики назовут подлежащим прямое дополнение.
Почему ученики затрудняются в определении подлежащего в предложениях, где подлежащего нет, где оно лишь подразумевается? Да потому, что они до сих пор имели дело только с такими предложениями, где подлежащие были. И это привело к тому, что они фактически не научились ориентироваться на все существенные признаки подлежащего одновременно, а довольствуются лишь одним: или смысловым, или формальным. Собственно грамматические приемы работы с подлежащим у учащихся не сформированы.
Язык, как и математику, можно изучать по существу, т.е. с пониманием его специфических особенностей, с умением опираться на них, пользоваться ими. Но это будет только в том случае, когда учитель формирует необходимые приемы языкового мышления. Если же об этом должной заботы не проявляется, то язык изучается формально, без понимания сути, а поэтому и не вызывает интереса у учащихся.
Следует отметить, что иногда необходимо формировать такие специфические приемы познавательной деятельности, которые выходят за рамки изучаемого предмета и в то же время определяют успех в его овладении. Особо рельефно это выступает при решении арифметических задач.
Для того чтобы понять особенности работы с арифметическими задачами, прежде всего ответим на вопрос: в чем состоит отличие решения задачи от решения примеров? Известно, что ученики гораздо легче справляются с примерами, чем с задачами. Известно также, что главное затруднение состоит обычно в выборе действия, а не в его выполнении. Почему так происходит и что значит выбрать действие? Вот первые вопросы, на которые надо ответить.
Отличие решения задач от решения примеров состоит в том, что в примерах все действия указаны, и ученик должен лишь выполнить их в определенном порядке. При решении же задачи, ученик, прежде всего, должен определить, какие действия необходимо совершить. В условии задачи всегда описана та или иная ситуация: заготовка корма, изготовление деталей, продажа товаров, движение поездов и т.д. За этой конкретной ситуацией ученик должен увидеть определенные арифметические отношения. Другими словами, он должен фактически математическим языком описать приведенную в задаче ситуацию.
Естественно, что для правильного описания ему надо не только знать саму арифметику, но и понимать сущность основных элементов ситуации, их отношения. Так, при решении задач на «куплю-продажу» ученик может правильно действовать только тогда, когда понимает, что такое цена, стоимость, какие отношения между ценой, стоимостью и количеством товара. Учитель часто полагается на житейский опыт учеников и не всегда уделяет достаточное внимание анализу описанных в задачах ситуаций. Вот это и приводит к одному из главных затруднений при решении задач.
В самом деле, если при решении задач на «куплю-продажу» учащиеся имеют еще какой-то житейский опыт, то при решении задач, например, на «движение» этот опыт оказывается явно недостаточным, что вызывает особенно большие затруднения у учащихся. Эти трудности объясняются прежде всего тем, что учащиеся часто не понимают сути основных понятий, указанных в задаче, и существующих между ними отношений.
Анализ указанных видов задач, как и многих других, показывает, что основу описываемого в них сюжета составляют величины, связанные с процессами: скорость поездов, время протекания процесса, продукт (результат), к которому приводит этот процесс или который он уничтожает. Это может быть путь, проделанный поездом; это может быть израсходованный корм и т.д. Успешное решение этих задач предполагает правильное понимание не только этих величин, но и существующих между ними отношений. Так, например, ученики должны понимать, что величина пути или производимого продукта прямо пропорциональна скорости и времени, а время, необходимое для получения какого-либо продукта или для прохождения пути, прямо пропорционально величине заданного продукта (или пути), но обратно пропорционально скорости: чем больше скорость, тем меньше время, требуемое для получения этого продукта или прохождения пути. Если учащиеся усвоят отношения, существующие между этими величинами, то они легко поймут, что по двум величинам, относящимся к одному и тому же участнику процесса, всегда можно найти третью. Наконец, в процессе может участвовать не одна, а несколько сил. Для решения этих задач необходимо понимать отношения между участниками: помогают они друг другу или противодействуют, одновременно или разновременно включились в процессы и т.д. Указанные величины и их отношения и составляют сущность всех задач на процессы. Если учащиеся понимают эту систему величин и их отношения, то они легко смогут и записать их с помощью арифметических действий. Если же они их не понимают, то действуют путем слепого перебора действий. По школьной» программе учащиеся изучают эти понятия в курсе физики в VI классе, причем изучают эти величины в частном виде - применительно к движению. В арифметике же задачи на различные процессы решаются уже в начальной школе. Этим и объясняются затруднения учеников при решении задач, связанных с различными процессами.
Работа с отстающими учениками III класса показала, что ни одно из указанных понятий ими не усвоено. Ученики не понимают и отношений, существующих между этими понятиями.
На вопросы, касающиеся скорости, ученики давали ответы такого типа: «Скорость у машины имеется, когда она идет». На вопрос, как можно узнать скорость, учащиеся отвечали: «Не проходили», «Нас не учили». Некоторые предлагали путь умножить на время. Задачу: «За 30 дней была построена дорога длиной 10 км. Как узнать, сколько километров строилось за 1 день?» - ни один из учащихся не смог решить.
Процесс решения шел хаотично: «Умножим 30 на 10… Или вначале прибавим». Не владели учащиеся понятием «время процесса»: они не дифференцировали таких понятий, как момент начала, допустим, движения и время движения. Если в задаче говорилось, что поезд вышел из какого-то пункта в 6 часов утра, то учащиеся принимали это за время движения поезда и при нахождении пути скорость умножали на 6 часов. Оказалось, что испытуемые не понимают и отношений между скоростью процесса, временем и продуктом (пройденным путем, например), к которому этот процесс приводит. Никто из учащихся не смог сказать, что ему надо знать, чтобы ответить на вопрос задачи. (Даже те ученики, которые справляются с решением задач, не всегда умеют ответить на этот вопрос.) Значит, для учащихся величины, содержащиеся в условии и в вопросе задачи, не выступают как система, где эти величины связаны определенными отношениями. А именно понимание этих отношений и дает возможность сделать правильный выбор арифметического действия. Все сказанное приводит нас к выводу: трудности в решении арифметических задач часто лежат за пределами арифметики как таковой. Главным условием, обеспечивающим успешное решение арифметических задач, является понимание учениками той ситуации, которая описана в задаче. Отсюда следует, что при изучении арифметических задач необходимо формировать приемы анализа таких ситуаций, которые являются не арифметическими, а физическими, экономическими и т.д. В школе этого обычно не делают, поэтому многие ученики и затрудняются в решении арифметических задач.
Важно также отметить, что приемы решения задач должны формироваться по возможности в обобщенном виде.
Так, в арифметике существует более 30 разновидностей задач, связанных с различными процессами. Большинство из них в школе усваивается как самостоятельные типы. Особенности ситуации, описанной в задаче, определяют способ ее решения.
Элементы ситуации можно выделить в том частном виде, в каком они описаны в той или иной задаче: корм, израсходованный за день; путь, пройденный пешеходом за час; вода, вытекающая в течение минуты, и т.д. Но эти же элементы могут быть сразу рассмотрены как частные проявления более общих величин и их отношений, характерных для любого процесса: каждая конкретная задача данного типа связана с протеканием какого-то частного процесса. Следовательно, учеников надо научить видеть в ней то, что характеризует любой процесс: действующие силы, скорость процесса (V), время протекания его (Т) и результат, продукт, к которому приводит этот процесс или который он уничтожает (5). В этом случае все названные задачи выступают перед учениками всего лишь как варианты задач на процессы. Умение решать эти задачи предполагает усвоение определенной системы понятий - скорость, время, продукт процесса, а также отношений между ними.
Страницы: 1, 2, 3, 4, 5, 6