Рефераты. Применение общедидактических принципов в организации занятий по развитию математических представлений у детей в ДОО

p align="left">1. Преемственность -- это связь качественно различного между разными стадиями обучения, начиная с детского сада и младших классов, заканчивая старшими. Например, от опыта житейских знаний дошкольника -- к сформированности учебной деятельности в младших классах.

2. Принцип развивающего обучения -- это всесторонне раскрытый принцип, “при котором можно закономерно управлять темпами и содержанием развития посредством организации обучающих воздействий”.

3. Принцип деятельности, по В.В. Давыдову, противостоит традиционно толкуемому принципу сознательности. Эти значит, что дошкольники, а в последствие школьники, получают знания не в готовом виде, а сами “выясняют условия их происхождения” посредством “специфических действий преобразования предметов”.

4. Принцип предметности противостоит принципу наглядности. Он означает точное указание “тех специфических действий с предметами, чтобы, с одной стороны, выявить содержание будущего понятия, с другой -- изобразить это первичное содержание в виде знаковых моделей”. [12]

Заканчивая разговор об общедидактических и психолого - дидактических принципах обучения, можно сделать некоторые выводы:

1. Дидактические принципы имеют длинный исторический путь развития. Большинство из них найдены опытным путем и существуют традиционно. В процессе развития педагогической теории эти принципы приобретают научное обоснование, имеют нормативный характер и способствуют эффективному построению учебного процесса.

2. Развивающейся в последнее время дидактике в рамках традиционной номенклатуры принципам обучения стало тесно. Практика педагогов-новаторов подсказала некоторые новые принципы. Они дополняют, уточняют и улучшают традиционные. Например, принцип межпредметных связей, бесконфликтности, обратной связи, успеха (В.Ф. Шаталов); художественности (Б.М. Неменский), взаимного обогащения учащихся знаниями (Х.Й. Лийметс, М.Н. Скаткин).

3. Новые концепции обучения вызвали к жизни и новые принципы. Идея развивающего обучения по концепции Л.В. Занкова выдвинула систему из 5 принципов. Та же идея в соответствии с концепцией Д.Б. Эльконина--

В.В. Давыдова потребовала коренного пересмотра традиционных. Новые концепции обучения, например, личностно ориентированного, наверняка подвергнут ревизии традиционные принципы и подскажут новые. [10]

1.3 Реализация общедидактических принципов в организации занятий в ДОО

В дошкольном возрасте закладываются основы знаний, необходимых ребенку в школе. Математика представляет собой сложную науку, которая может вызвать определенные трудности во время школьного обучения. К тому же далеко не все дети имеют склонности и обладают математическим складом ума, поэтому такое важное значение имеет оптимальная организация занятий при математической подготовке детей к школе.

И родители, и педагоги знают, что математика - это мощный фактор интеллектуального развития ребенка, формирования его познавательных и творческих способностей. Самое главное - это привить ребенку интерес к познанию. Для этого занятия должны строиться с учетом всех общедидактических принципов, проходить в увлекательной игровой форме.

Постепенно у детей пробуждается интерес и к самому предмету обучения.

Обучение математике, как и любому учебному предмету, может стать эффективным средством формирования личности, достичь непосредственной цели - прочного и сознательного усвоения ее содержания - лишь в случае, если в основу обучения будут положены определенные положения, вытекающие из основных закономерностей дидактики, подтвержденные опытом обучения. [13]

Система таких положений, специально ориентированная на особенности математики как учебного предмета, и составляет основное содержание общедидактических принципов, применяемых в организации занятий по РЭМП. Наиболее важные принципы, характеризующие подход к обучению основам математики в детском саду, - принцип наглядности, принцип воспитывающего обучения, принцип научности, принцип сознательности и активности обучения, принцип систематичности и последовательности и др. Владение этими принципами необходимо педагогу для того, чтобы правильно организовать свой труд, грамотно, квалифицированно анализировать различные учебные пособия и методические разработки, которыми ему придется пользоваться в своей работе. [8]

А.А. Столяр предлагает систему общедидактических принципов дополнить двумя принципами, характерными для обучения математике:

1) курс математики должен отражать фундаментальные идеи и логику современной математики (в соответствии с уровнем мыслительной деятельности дошкольников на разных возрастных этапах);

2) процесс обучения математике должен строиться подобно процессу исследования в математике, то есть, он должен имитировать процесс творческого поиска в математике (в определенной мере, в какой это допускает уровень мыслительной деятельности детей дошкольного возраста).

Первый принцип относится к построению содержания обучения математике и в определенной степени конкретизирует дидактический принцип научности.

Второй принцип относится к построению процесса обучения и конкретизирует дидактический принцип развивающего обучения. [14]

В методической литературе по математическому развитию общепризнанной является следующая система дидактических принципов:

1. Принцип воспитания в развитии математических представлений.

2. Принцип научности в обучении математике.

3. Принцип сознательности, активности и самостоятельности в развитии математических представлений.

4. Принцип систематичности и последовательности в развитии математических представлений.

5. Принцип доступности в развитии математических представлений.

6. Принцип наглядности в развитии математических представлений.

7. Принцип индивидуального подхода к учащимся в развитии математических представлений.

Принцип воспитания

Общей целью воспитания в детском саду является подготовка к всестороннему развитию личности, способной построить и защитить общество. Всестороннее развитие личности предполагает умственное и нравственное развитие, богатую духовную жизнь, физическое и эстетическое развитие. Реализация общей цели воспитания требует поэтому решения более частных задач, которые рассматриваются в качестве составных частей или сторон воспитания: трудовое, нравственное, умственное, эстетическое и физическое воспитание. Выделение составных частей воспитания опирается на объективные требования общества в развитии определенных свойств (качеств) личности. [5]

Но воспитание в процессе обучения вообще и математике в частности как принцип обучения имеет и свою содержательную направленность, которая определяется формированием мировоззрения и морали. Чтобы каждый ребенок мог действовать в соответствии с принципами мировоззрения и морали, он должен сформировать у себя такие черты характера, как трудолюбие, сила воли, скромность, честность по отношению к самому себе и другим людям.

Мировоззрение, базирующееся на научном знании и практическом жизненном опыте, связывает в единое целое эти свойства личности. Отсюда вытекают возможность и необходимость передачи всем людям знаний о закономерностях развития природы, общества и человеческого мышления, чтобы они могли сознательно осуществлять практическую деятельность. [9]

Следовательно, в формировании убеждений возрастает роль процесса усвоения знаний. В связи с этим в развитии математических представлений (как и каждого раздела образовательной программы) необходимо повышать активность детей и возбуждать у них интерес к вопросам, имеющим мировоззренческое значение. Важную роль в этом приобретает освещение в преподавании математики новых идей современной науки.

При планировании содержания, средств, методов и форм обучения педагог призван обеспечить решение всего комплекса образовательных, воспитательных и развивающих задач. [5]

Принцип научности

Требование научности содержания образования было выдвинуто в советской педагогической литературе еще в работах Н. К. Крупской.

Статус дидактического принципа требование научности в обучении приобрело с 1950г., когда оно было сформулировано и обосновано М. Н. Скаткиным. В дальнейшем Л.Я. Зорина показала, что под научностью содержания образования следует понимать такую его качественную характеристику, которая удовлетворяет трем признакам:

а) соответствие содержания образования уровню современной науки;

б) создание верных представлений об общих методах научного познания;

в) показ важнейших закономерностей процесса познания. [12]

Эти условия взаимосвязаны между собой, ибо реализация каждого из последующих обусловлена выполнением предыдущих; каждое предыдущее условие является необходимой базой для реализации последующего.

В организации занятий по развитию математических представлений дошкольников у педагогов имеется много возможностей показать закономерности процесса познания. Именно поэтому в процессе обучения основам математике шире должны внедряться проблемное обучение и разнообразные исследовательские приемы.

В процессе реализации принципа научности воспитатель должен соблюдать также принцип доступности, чтобы содержание, формы и методы обучения учитывали реальные возможности воспитанников. При этом необходимо учитывать и то, что принцип доступности предполагает обучение на достаточно высоком уровне трудности. Однако это можно достигнуть лишь при наилучшем сочетании индивидуальных и коллективных форм познавательной деятельности дошкольников в обучении.

Принцип систематичности и последовательности

Нельзя овладеть наукой, не изучая ее в определенной системе. В такой же мере нельзя успешно развивать познавательные и творческие способности дошкольников без строго продуманной системы их обучения и воспитания.

Систематичность в развитии математических представлений предполагает соблюдение определенной последовательности в изучении учебного материала и постепенное овладение основными понятиями дошкольного курса математики.

Последовательность в обучении математике означает, что обучение осуществляется в соответствии с правилами обучения: а) от простого к сложному; б) от легкого к трудному; в) от известного к неизвестному;

г) от представлений к понятиям; д) от знания к умению, от него к навыку. [7]

Принцип доступности

Принцип доступности в обучении вытекает из требований учета возрастных и индивидуальных особенностей детей дошкольного возраста. Он лежит в основе составления учебных планов и программ.

Принцип доступности требует, чтобы объем и содержание предлагаемого воспитателем материала были по силам воспитанникам, соответствовали уровню их умственного развития и имеющемуся у них запасу знаний, умений и навыков.

Реализация принципа доступности в развитии математических представлений предполагает выполнение следующих дидактических условий: а) следовать в обучении от простого к сложному; б) от легкого к трудному; в) от известного к неизвестному. [16]

Отсюда следует, что строгое соблюдение в обучении принципа систематичности и последовательности предопределяет успешную реализацию принципа доступности.

Принцип доступности в дошкольном образовании привлекает к себе особое внимание также в связи с проблемой индивидуального подхода к воспитанникам в условиях массового обучения в детском саду.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.