Очень вероятны случаи, когда решение можно представить в виде нескольких разных траекторий. Покажем эту операцию на следующем примере.
Задача 6. Тело массой m, летящее горизонтально и имеющее кинетическую энергию E, попадает в неподвижно висящий на нити длиной L брусок массой М и застревает в нем. Какова максимальная сила натяжения нити?
Не приводя текста и рисунка, укажем основные понятия, законы и соотношения (формулы), используемые при решении этой задачи: кинетическая энергия, закон сохранения импульса, центростремительное ускорение, второй закон Ньютона. Пронумеруем и запишем используемые формулы.
Анализируя решение можно составить следующие «траектории» решений:
а). 1 - 2 - 3 - 4 - 5; б). 2 - 1 - 3 - 4 - 5;
в). 4 - 5 - 1 - 2 - 3 - 5; г). 4 - 2 - 1 - 3 - 5;
г). 4 - 5 - 3 - 2 - 1 - 2 - 3 - 4 - 5
Последовательность действий г) отражает аналитический способ рассуждений (4-5-3-2-1) и последующий порядок алгебраических действий (1-2-3-4-5). Остальные «траектории» представляют собой различные варианты синтетического способа решения этой же задачи, когда последовательность операций не подчинена строгой логике и все решение представляет набор действий, (интуитивно или осознанно - бывает всякое) укладывающихся в русло логики решения.
Если задача решена синтетическим методом, т.е. решение представляет собой набор фрагментов, располагающихся в случайной, неупорядоченной последовательности, то в памяти не сформируется алгоритм решения задач аналогичного содержания и типа, не возникнут ассоциативные связи с ранее решёнными подобными задачами, а следовательно, и мысленные схемы-конструкции, облегчающие распознавание и поиск аналогов и прецедентов. Эти огрехи можно выправить глубокой и осознанной проверкой ответа.
В реальном учебном процессе учитель, использующий аналитический метод решения, открыто разрабатывает, обосновывает маршрут движения в «дремучем лесу», показывая не только и не столько арсенал физических знаний, сколько методику логически безупречного их использования в конкретной ситуации.
Процесс синтетического решения - это в значительной мере «жонглирование» формулами. Конечный продукт здесь возникает после длительного процесса поиска, и очень часто не как следствие напряжённого труда, а как озарение. По затраченному времени такой способ проигрывает как в случае решения отдельной задачи, так и в общем процессе формирования навыков решения задач.
6. «Метод» решения «есть такая формула»
Наиболее откровенно такой стиль обучения наблюдается в работе Р А.П.Рымкевич, Решение задач из учебного пособия А.П.Рымкевича «Сборник задач по физике», 11 класс, М., «Дрофа» , 2002.. В этом решебнике приведены решения всех задач учебного пособия этого же автора «Сборник задач по физике», рекомендованного для школ министерством образования РФ. Мы проанализировали структуру, содержание и общий стиль предлагаемых автором решений.
Подавляющее большинство решений задач выполнены в одном стиле. Кратко его можно охарактеризовать, как решение от «формулы к формуле». Приведём в качестве примера дословное описание решения задачи №840.
Задача 7. «В однородное магнитное поле с индукцией В=10 мТл перпендикулярно линиям индукции влетает электрон с кинетической энергией Wк=30кэВ. Каков радиус кривизны траектории движения электрона в поле?
Решение. Кинетическая энергия
W=mv2/2,
следовательно,
v= (2Wk/m)1/2
Подставляя это выражение в формулу для скорости из задачи 839, получаем:
R=mv/eB=(2Wkm)1/2/eB.
Вычисления: R= …(следует подстановка числовых данных в СИ и вычисления).
Ответ: R=5,8 см.»
Такой стиль решения задачи - характерная особенность всего этого решебника. Отсутствие выделенного анализа сюжета обедняет содержание задачи, не связывает её физическое содержание с другими разделами курса физики и не способствует закреплению внутрипредметных связей. По нашему мнению здесь было бы полезным показать: а) траектория движения электрона - окружность, поскольку во всех точках движения на неё действует постоянная по величине и перпендикулярная к вектору скорости сила Лоренца F=qvBsinб; б) сила Лоренца не ускоряет частицу, поэтому все величины в формуле W=mv2/2 постоянны; в) при энергии 30 кэВ электрон ещё не стал релятивистской частицей и его масса в формулах энергии и силы Лоренца действительно равна 9,1•10-31 кг. И т.д.
Отсутствие анализа условий нередко приводит к грубым физическим ошибкам. В задачах по электростатике (№№680 - 690) закон Кулона повсеместно применяется без учёта размеров заряженных тел. Указание автора «считать заряды точечными» дано в сноске перед этим разделом, но … с какого-то номера задачи следовало бы снять это условие, чтобы показать границы применимости этого закона.
В задачах 683 и 684 бездоказательно утверждается, что «при соприкосновении заряженных одинаковых металлических шариков суммарный заряд делится поровну», что следовало бы доказать. Тогда в решении закрепились бы знания о потенциале и электроёмкости изолированных шаров.
В пособии редко встречаются словосочетания типа «условимся считать систему изолированной». Поэтому многие решения нельзя признать правильными, и «обучающими». Например, нельзя не согласиться с утверждением, что «рука искажает картину силовых линий электрического поля, выходящих из шара», Но жаль, что ни до, ни после этой фразы нет тому физических обоснований (задача 739). Аналогично без обоснования (задача 741), ссылаясь на рисунок, утверждается, что «силовые линии расположены гуще, поэтому напряженность поля больше». А здесь так к месту было бы объяснение на основе опытов или теории.
В задаче №742 утверждается, что «электрическое поле между заряженными плоскими пластинами однородно», хотя это верно только в случае бесконечных однородно заряженных плоскостей. Но как в тексте задачи, так и в решении отсутствует обоснование. Оно могло иметь примерно такую форму: «условимся считать, что расстояние между пластинами значительно меньше их размеров, тогда краевыми эффектами можно пренебречь».
«Формульный» способ приводит к тому, что многие решения трудно понять без дополнительных пояснений. Откуда, например, берётся формула v=eBR/m в задаче №842, или формула t=1/2nN в задаче №1007. Не помогают понять решение рисунки в задачах (№736, №836,). В ряде случаев решение более чем на половину состоит из математических действий подстановочного и вычислительного характера (см. например, №697).
Исключая качественные задачи-вопросы, ни одно из решений в этом пособии не содержит ответа в расширенной текстовой форме, даны только числовые значения, как - будто эти числа действительно имеет какое-то значение для понимания физики.
Даже при не очень критическом подходе почти в каждом решении можно найти не только недочёты, но грубые ошибки. Пособие мало пригодно для использования учащимися, самостоятельно постигающими физику.
Тем не менее, при активном участии учителя оно может оказаться полезным, особенно на начальном этапе обучения, как пособие по обретению первичных навыков использования формул. А также для обучения по принципу: «найди ошибки в условии или в решении задачи»; «приведите текст трансформированной задачи»; «перечислите все условности, которые позволили решить эту задачу»; «дайте расширенное толкование полученного ответа».
В последние годы многие школы перешли к преподаванию физики по учебнику В.А.Касьянова «Физика 10» и «Физика 11». В тексте учебника имеются задачи для домашнего решения. Естественно, сразу же появилось специальное пособие в серии «Готовые домашние задания» под названием «Правильные ответы к задачам учебника В.А.Касьянова, 10 класс» В.А.Касьянов, М.С.Атаманская, А.С.Багатин, «Правильные ответы к задачам учебника В.А.Касьянова ФИЗИКА. 10 класс». М., Дрофа, 2005.. Структура решебника примерно такая же, как у А.П.Рымкевича - приведены ответы к задачам в стандартном оформлении (краткая запись, решение, ответ). Но пособия эти имеют существенные отличия. В пособии В.А.Касьянова меньше задач тренировочного типа, задачи по структуре относятся к комбинированному типу. Это обстоятельство существенно увеличивает внутрипредметные и межпредметные связи, способствует углублению физических представлений.
Но и здесь отсутствует этап анализа физической ситуации, поэтому нет работы над модельными представлениями, над разработкой плана решения. Следует отметить, что текстовые пояснения к сюжету задачи имеются, что помогает понять смысл и стратегию решения. Но они даются в очень сжатой форме, поэтому некоторые важные подробности и детали физических процессов и явлений ускользают. Например, в задаче 5 на с.53 можно было ввести условие «считать стенку гладкой», поскольку для ударяющихся о неё молекул она, конечно таковой не является, поскольку сама сложена из молекул.
В задаче 4 на с.56 следовало вначале условиться считать замкнутой систему «человек - лодка». Кроме того, можно было предложить (обсудить) второй вариант решения - через центр массы системы «человек-лодка». В ходе этого решения ученики осваивают вторую формулировку закона сохранения импульса - «внутренними силами замкнутой системы нельзя изменить положение её центра массы».
Следствия из специальной теории относительности всегда с трудом воспринимаются учащимися. Решение задачи 1 на с.95 выполнено в чисто «формульном» виде, без специальных пояснений о системах отсчета. Можно утверждать, что такое решение не добавит ничего к формальным представлениям об эффекте замедления времени.
В задачах на поверхностное натяжение авторы не упоминают краевой угол смачивания. Отсутствие анализа затрудняет понимание физического смысла в задаче 1 на с.188. По-видимому, авторы имели в виду оценку возможности ионизации молекул воздуха электронным ударом, но всё свелось к чистым формулам и расчётам.
Подобного рода погрешности содержатся и во многих других задачах этого решебника. Нет в нём также проверки ответов и их комментирования.
Страницы: 1, 2, 3, 4, 5, 6