Рефераты. Принцип межпредметных связей при решении химических задач. Разбор основных способов решения расчетных задач

p align="left">1) Вычисление состава соединений, смесей, выведение формул соединений.

При решении химических задач часто возникает потребность проводить вычисления для нахождения соотношений составных частей в различных объектах. В качестве последних можно рассматривать химические соединения, смеси веществ, сплавы. Задачи этого типа приходиться решать не только химикам, но и представителям самых разнообразных профессий - агрономам, врачам, металлургам, геологам и т. д.

В задачах обычно рассматриваются объекты, которые состоят из компонентов. Количественный состав объектов удобно выражать в долях, которые составляют компоненты по отношению к целому объекту. Употребляют массовую, объемную и молярную доли. Массовая доля w (X) i-го компонента, входящего в состав объекта, равна отношению массы этого компонента m (X) к массе объекта m (об) и выражается в долях единицы или в процентах:

W ( , или w( 100 %

Массу компонента в объекте вычисляют, умножив массу объекта на массовую долю компонента в нем: m(x ) = m ( об ) • w ( x )

Так, зная химический состав соединений, т. е. их формулы и молярные массы, можно вычислять массовые доли элементов в этих соединениях. И наоборот, зная массовые доли элементов в соединениях, можно находить молекулярную формулу соединения.

Ниже приведены примеры решения отдельных задач. Все они принадлежат к одному типу, поэтому алгоритмы их решения идентичны. В преобладающем большинстве случаев ход решения строится так: обозначаем буквами неизвестные величины и формулируем их физический смысл; словесно формулируем смысл уравнений и неравенств, которые затем записываем с помощью символов; подставляем числовые значения; решаем систему уравнений и неравенств и даем ответ.

Задача № 1 . Вывести формулу вещества с молярной массой 123 г/моль, если состав его , выраженный в массовых долях , следующий : углерод 58,5 %, водород 4,1 %, азот 11,4 %, кислород 26,0 %

Решение: Формулу соединения условно можно записать Cx H y Nz Ot .

Искомые величины - числа атомов в молекуле ( индексы в данной формуле- x, y, z, t).

Массовые доли химических элементов в данном веществе можно выразить:

W (N) =

W (H) = W (O) =

Составим уравнения, учитывая, что произведение молярной массы соединения на массовую долю данного элемента, входящего в его состав, равно молярной массе элемента, умноженной на его индекс в формуле соединения.

Решим каждое уравнение :

М ( Cx Hy Nz Ot ) • w ( C ) = x• M ( C ) 123•0,585 = 12 х , х = 6

М ( Cx Hy Nz Ot ) •w ( H ) = y • M ( H ) 123 • 0. 041 = уу = 5

М ( Cx Hy Nz Ot ) • w (N ) = z • M ( N ) 123 • 0, 114 = 14 z z = 1

M ( Cx Hy Nz Ot ) • w ( O ) = t• M (O) 123• 0,26 = 16t, t=2

Ответ: формула соединения (нитробензол).

Задача № 2 . В кристаллогидрате сульфата марганца (II) массовая доля марганца равна

0, 268. Определить количество вещества воды, приходящееся на 1 моль кристаллогидрата. Написать формулу соли.

Решение: Рассматриваемым объектом является 1 моль кристаллогидрата сульфата марганца (II). Его формулу условно запишем , где n- искомая величина.

Составим уравнение, учитывая, что массовая доля марганца в кристаллогидрате равна отношению молярных масс марганца и данного кристаллогидрата:

W (Mn) =

Подставляя в уравнение вместо символов их числовые значения, получим: 0,268 = . Решая уравнение, найдём n = 3 .

Ответ: 1 моль кристаллогидрата сульфата марганца ( II ) содержит 3 моль воды. Формула соли - .

Задача № 3 . При полном сгорании 3,1 г органического вещества (М= 93 ) образовалось 8, 8 г оксида углерода ( IV) , 2,1 г воды и выделилось 0,47 г азота. Написать формулу вещества.

Решение: В общем виде соединение можно представить формулой , где х , у, z и t- искомые величины.

Составим уравнения, учитывая следующее:

1) масса углерода в сгоревшем веществе и в образовавшемся оксиде углерода

( IV) равны:

m ( Cx Hy Nz Ot )

или 3,188 , откуда х=6;

1) массы водорода в сгоревшем веществе и в образовавшейся воде равны:

m (CxHyNzOt)

или 3,1 , откуда у=7;

2) масса азота в 3,1 г соединения равна 0,47 г:

m () , 3,1 ,

откуда z=1;

3) молярная масса соединения равна сумме молярных масс каждого элемента, умноженных на соответствующие индексы в формуле:

М () = х, или

93=6, откуда t =0.

Ответ: формула соединения (анилин).

Задача № 4 . Массовая доля серебра в соли предельной одноосновной органической кислоты составляет 70,59 %. Написать молекулярную формулу этой кислоты, если известно , что она состоит из углерода , водорода и кислорода .

Решение: Запишем химические формулы кислот и её соли в условном виде:и Аg..Индексы х, у и z-искомые величины.

Выражая молярную массу соли серебра через молярные массы составляющих её атомов, получим:

М (Аg) =

х

Составим уравнение, учитывая, что произведение молярной массы соли на массовую долю в ней серебра равно молярной массе серебра:

М (Аg)

(107+12х+у+16z) откуда 12х + у + 16z = 46.

По условию задачи одноосновная предельная органическая кислота имеет общую формулу , или, . Отсюда у =2х , z = 2.

Искомые числа х и у одновременно удовлетворяют двум уравнениям:

12х +у +16

2х = у

Решая систему уравнений, получим х = 1, у = 2. Следовательно, формула кислоты - , или НСООН.

Ответ: Формула кислоты - НСООН.

Задача № 5 . После полного термического разложения 2,0 г смеси карбонатов кальция и стронция получили 1,23 г смеси оксидов этих металлов. Оксид углерода (IV) улетучился. Вычислить массу карбоната стронция в исходной смеси.

Решение: Запишем уравнение реакции:

x y

SrC> SrO + C (I)

148 г104 г

2-х 1,23-у

CaC> CaO + C (II)

100 г 56 г

Искомую величину- массу карбоната стронция в смеси обозначим через х: m (SrC= x. Тогда масса карбоната кальция будет равна m (CaC) = 2-x, а масса выделившегося оксида углерода (IV) составит m (C) = (2-1,23) г = 0,77 г.

Составим уравнение, учитывая, что масса углерода в исходной смеси карбонатов металлов равна массе углерода в выделившемся оксиде углерода (IV):

m ( CaC)

Подставляя числовые значения, получим:

(2-х) откуда х=0,75 .

Ответ: масса карбоната стронция равна 0,75 г .

Задача № 6 . Рассчитать массовые доли компонентов смеси , состоящей из гидрата карбоната аммония , карбоната калия и гидрофосфата аммония, если известно , что из 38,4 г этой смеси получили 8,8 г углекислого газа и 6,8 г аммиака.

Решение:

М ( ) = 114 г/моль

М () = 138 г/моль

М () = 132 г/моль

Пусть в смеси х моль , у моль и z моль , тогда

114х + 138у + 132z = 38,4

Из х моль гидрата карбоната аммония можно получить 2х моль аммиака и

х моль углекислого газа:

х2х х

> 2

Аналогично,

у у z 2z

> > 2

n () = 8,8/44 = 0,2 моль х + у = 0,2

n () = 6,8/ 17= 0,4 моль 2х+2z =0,4

Решая систему уравнений

114х + 138у + 132z = 38,4

х + у = 0,2

2х+2z =0,4

находим х = у = z = 0,1 моль

w () =

w () =

w ((NH4)HPO4 =

Ответ: w () = 29,7 % , w() = 35,9 % ,

w () = 34,4 %.

2) Задачи на газовые законы. Определение количественных отношений в газах.

Расчёты масс, количеств веществ и объёмов газов обычно проводят с помощью алгебраических уравнений, как правило, на основе закона Авогадро. Рассмотрим некоторые особенности составления таких уравнений.

Иногда в задачах требуется произвести вычисления с газами, при смешении которых не происходит химического взаимодействия, а образуется смесь исходных газов. В таких случаях при составлении алгебраических уравнений учитывают, что масса газовой смеси равна сумме масс газов смеси. В уравнении массу каждого газа, а также смеси представляют как произведение количества вещества газа на его молярную массу: m = n* M. В отдельных задачах при составлении уравнений принимают во внимание , что количество вещества в газовой смеси равно сумме количеств веществ газов, которые были смешаны.

Если в условии задачи задана относительная плотность D некоторого газа, имеющего молярную массу М ( х ), по другому газу, имеющего молярную массу М ( а ), то можно использовать существующую зависимость между этими величинами: D = М ( х ) / М ( а ) - выражать молярную массу газа М ( х ) в виде произведения .

Во многих задачах рассматриваются газы, которые при смешении реагируют между собой, образуя газообразные продукты реакции. В таких случаях при составлении алгебраических уравнений учитывают, что объёмы участвующих в реакции газов относятся как коэффициенты перед формулами соединений в уравнении химической реакции. Причём объёмы газов должны быть взяты при одинаковой температуре и давлении. В алгебраических уравнениях отношение объёмов реагирующих газов иногда удобно заменять отношением количеств веществ газов.

В процессе решения задач, касающихся газов, иногда полезно использовать информацию, которую можно представить в виде неравенств. Последние иногда непосредственно следуют из условия задачи. Однако в ряде случаев их можно составлять на основе известных свойств газов. Например, для любого газа относительная плотность по водороду больше единицы: DH > 1; средняя молярная масса газа, состоящего из молекул различных соединений, находится в пределах значений молярных масс этих соединений: и т. п.

Иногда в условиях задач объём газа даётся не при нормальных, а при каких-то других условиях. В этом случае, как обычно говорят, нужно привести объём к нормальным условиям. Для этого проще всего воспользоваться объединённым газовым законом, который математически выражается так:

.

Где V0 - объём газа при н.у., т.е. при нормальной температуре T0 = 273 K и при нормальном давлении P0 =101325 Па; V- объём газа при данной температуре T и данном давлении P.

Значение молярной массы газа, а также число молей газа можно найти при использовании уравнения Клапейрона - Менделеева:

PV=

Где P - давление газа , V- объём системы , m - масса газа, Т- абсолютная температура, R- универсальная газовая постоянная: R= 8,31 Дж / ().

При расчётах газовых реакций нет необходимости определять число молей веществ, а достаточно пользоваться их объёмами. Из закона Авогадро и основного закона стехиометрии вытекает следующее следствие отношение объёмов газов, вступающих в реакцию, равно отношению коэффициентов в уравнении реакции. Это утверждение называется законом объёмных отношении Гей-Люссака.

Задача № 1 . Какой объём (н.у.) озонированного кислорода с молярной долей озона 24 % требуется для сжигания 11,2 л водорода.

Решение: Реакциям горения водорода отвечают уравнения:

2+ = 2

3 + = 3

Искомая величина V (смеси) - объём озонированного кислорода, необходимый для сжигания 11,2 л водорода. Составим уравнения, учитывая, что количество вещества водорода равно сумме удвоенного количества кислорода и утроенного количества вещества озона.

n () = 2n ()+ 3n (),

,

Откуда V (смеси) =5 л.

Ответ: 5 л озонированного кислорода.

Задача № 2 . К 30 л смеси, состоящей из этана и аммиака добавили 10 л хлороводорода, после чего плотность паров газовой смеси по воздуху стало равной 0,945. Вычислить объёмные доли газов в исходной смеси.

Решение:

При добавлении хлороводорода происходит реакция

+ HCl >

с образованием твёрдого .

Конечная газовая смесь имеет среднюю молярную массу

Мср = = 27,4 г/ моль

и состоит из этана (М= 30 г/ моль) и аммиака (М= 17 г/ моль). Это означает, что аммиак в реакции - в избытке. Если бы в избытке был хлороводород, то в конечной смеси вместо аммиака был хлороводород , и средняя молярная масса была бы больше 30 г/ моль.

Пусть в исходной смеси было х л аммиака и у л этана, тогда в конечной смеси содержатся

( х- 10) л аммиака и у л этана. Значения объёма исходной смеси и молярной массы конечной смеси дают систему двух уравнений для х и у :

х + у = 30

откуда следует х=14 л , у=16 л .

ц () = 14/30 = 0,47, ц () = 16/30 = 0,53.

Ответ: 47 % , 53 % .

Задача № 3 . Смесь паров пропина и изомерных монохлоралкенов при и давлении 96,5 кПа занимает объём 18 л и при сжигании в избытке кислорода образует 18 г воды. Вывести формулы монохлоралкенов. Вычислить объём 1,7 % раствора нитрата серебра (плотность 1,01 г/мл), который может прореагировать с продуктами сжигания исходной смеси, если известно, что её плотность по воздуху 1,757.

Решение: Общая формула монохлоралкенов - .

Сгорание компонентов смеси происходит по уравнениям:

х 2х

у (n -1)y

+ (1.5 n-0.5).

Пусть в смеси было х моль (М = 40) моль, y моль (М = 14n+34).

Общее количество веществa в газовой смеси: n = PV/RT = 96.5моль. Средняя молярная масса смеси равна М=29 = 50.95 г/моль.

Отсюда масса 0.5 моль смеси составляет m = 50.95 [11, 12].

ЛИТЕРАТУРА

1. Абкии Г. П. Методика решения задач по химии. -- М.: Просвещение, 1971.

2. Аркавепко Л. Н., Гапонцев В. Л., Велоусова О. А. Для чего классифицировать расчетные задачи // Химия в школе, 1995, № 3. С. 60.

3. Архангельская О. В. Решение задач. Чем проще, тем изящнее // Химия в школе, 1998. С. 46.

4. Беляев Н. Н. О системном подходе к решению задач // Химия в школе, 1998, № 5. С. 46.

5. Буцкая Н. Н. К решению задач по химическим уравнениям // Химия в школе, № 5. С. 49.

6. Емельянова Е. О. Подготовка учащихся к решению расчетных задач // Химия в школе, № 3. С. 53.

7. Крыгин Д. П., Грабовый А. К. Задачи и примеры по химии с межпредметным содержанием. -- М.: Высшая школа, 1989.

8. Ерыгин Д. П., Шишкин Е. А. Методика решения задач по химии. -- М.: Просвещение, 1989.

9. Медведев Ю. Н. и др. Учимся решать сложные задачи // Химия в школе, 1977, № 4. С. 53.

10. Протасов П. Н., Цитович И. К. Методика решения расчетных задач по химии. -- М.: Просвещение, 1978.

11. Савицкий С. Н., Твердовский Н. П. Сборник задач и упражнений по неорганической химии. -- М.: Высшая школа, 1981.

12. Шамова М. О. К решению задач на определение формул веществ // Химия в школе, 1997, № 4. С. 50;

13. Учимся решать расчетные задачи по химии: технология и алгоритмы решений. -- М.: Школа-Пресс, 1999.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.