1.2.1 Проверка домашнего задания
1.2.2 Введение понятий математического ожидания, среднеквадратичного отклонения и ковариации с.в.
Рассмотрим задачу 4 прошлого урока. Найдем сколько раз в среднем, выпадает четное число на кубике за три опыта. Кто нибудь знает? 1,5 - это понятно интуитивно. А теперь проверим при помощи формулы.
Величина называется математическим ожиданием и показывает какая с.в. в среднем выпадает.
Свойства мат.ожидания.
1)
2)
3)
Задача 1. С.в. задана рядом распределения. Найти .
Мат.ожидание - это величина, которая показывает какая с.в. в среднем выпадает. Но в некоторых случаях этой информации не достаточно. Например,нам известна средняя доходность акций, но для более рационального распределения средств необходимо знать на сколько может изменится эта доходность. Т.е. отклонение доходности. Для этого в МС используют среднеквадратичное отклонение с.в. .
Задача 2. Найдем для задачи 1.
В нашем случае математическое ожидание - это средняя ожидаемая доходность, а среднеквадратичное отклонение - это риск ц.б.
Задача 3. Я задумал три цифры. Вы должны написать их в той же последовательности. - это число угаданных вами цифр. Какие значения принимает и с какой вероятностью. Найти математическое ожидание и среднеквадратичное отклонение.
Для решения нашей задачи по формированию портфеля необходимо учитывать как влияет одна с.в. на другую. Допустим у нас акции нефтедобывающих компаний двух видов. Если цены на нефть упадут, то доходность снизится у обеих ц.б. А если у нас ц.б. Лукойл и МТС, то падение цен на нефть слабо отразится на доходность компании связи. Реже встречаются случаи,когда падение цен одной ц.б. влечет за собой рост цен другой. В экономике две ц.б. у которых происходит одновременный рост называются ц.б. с прямой корреляционной зависимостью. Если одна ц.б. падает в цене, а другая растет, то это обратная корреляционная зависимость. Если же изменение цен одной не влечет измененение цен другой, то это бумаги называют некоррелированными.
Очевидно, нам придется вводить еще одну численную характеристику с.в.- ковариацию. Пусть даны с.в. и .
Ковариация показывает зависимость с.в. . Точнее, это коффициент корреляции показывает зависимость с.в. -коффициент кореляции с.в. и . Он всегда меньше или равен единице. Причем если , то с.в. связаны линейной зависимостью. Если , то с.в. независимы.
При нехватке времени о коэффициенте корреляции можно не рассказывать, т.к. при решении поставленной задачи он не используется. Однако, он полезен для самоконтроля ()
Задача 4. Случайные величины заданы таблицей распределения. Наити их ковариацию и коэффициент корреляции.
При введении дисперсии и ковариации необходимо записать основную формулу через мат.ожидание. Вызвать ученика к доске, и направляя его получить формулы удобные для использования на практике. При этом необходимо опираться на свойства математического ожидания, проговаривая или предлагая вспомнить подходящее ученикам. По ходу урока приходится неоднократно проговаривать что такое с.в., что показывает среднеквадратичное отклонение, коэффициент корелляции. Сложности возникают с тем, что школьники не привыкли обозначать математические величины двумя буквами. В этом случае можно провести аналогию между функцией и математическим ожиданием, показать что - это аргумент, а - это функция, которая переводит набор чисел в число .
Как показали проведенные уроки, данный урок занимает 2 академических часа. ]
1.2.3 Домашнее задание
Задача 5. Случайные величины заданы таблицей распределения. Наити их ковариацию и коэффициент корреляции.
1.3 Третий урок
1.3.1 Проверка домашнего задания
1.3.2 Введение понятий вектор, матрица
Пусть дан вектор на координатной плоскости. Как его можно записать? (Координатами (х,у).) А в пространстве? (x,y,z)А в каком пространстве живем мы? (4, (x,y,z,t)). Пара чисел (x,y) называется двухмерным вектором, тройка чисел (x,y,z) - трехмерным, (x,y,z,t)- четырехмерным. Их вводят для краткости записей и рассматривают как один элимент. Вектора можно обозначать, опять же для краткости.
В общем виде можно вектор можно записать так . Это n-мерный вектор. Вектора бывают и бесконечномерные, но их мы рассматривать не будем.
Задание 1. Приведите примеры векторов.
Каким образом записывают результаты футбольных матчей? (При помощи таблиц.)
Пусть в группе В играли пять команд по круговой системе. Результаты игры отображены в таблице.
Где 2- победа,1- ничья,0- поражение.
Эту таблицу также можно назвать матрицей.
Опр. Таблицу вида
будем называть матрицей размерности .
Для краткости будем обозначать матрицы большими латинскими буквами.
Вектор является частным случаем матрицы при m=1.
1.3.3 Умножение матриц. Свойства
Как сложить две матрицы?
Опр. Суммой матриц и размерности называется матрица размерности .
Пример.
Как суммировать матрицы вы уже знаете. Теперь придумайте как умножить матрицу на число.
Опр. Произведением матрицы размерности и числа называется матрица размерности .
Кроме введенных операций нам понадобится умножение матриц.
Опр. Произведением матриц и называется матрица , где
Необходимо показать и озвучить практический способ умножения матриц: строка умножается на столбец. Берем первую строку матрицы А, ставим ее вертикально напротив первого столбца матрицы В, умножаем элементы этой строки и столбца, которые стоят напротив др.др., складываем произведения. Это первый элемент матрицы С. Теперь таким же образом умножаем эту строку на второй столбец - получаем второй элемент первой строки матрицы С. И т.д. Получим первую строку новой матрицы. Для того, чтобы получить вторую строку, проделываем тоже самое со второй строкой матрицы А.
Задача 1. Выполнить умножение.
1.3.4 Домашнее задание
Задача 2. Выполнить умножение.
1.4 Четвертый урок
1.4.1 Проверка домашнего задания
1.4.2 Транспонирование
Опр. Замена строк матрицы на ее столбцы (а стольбцов на строки) называется транспонированием. Обозначается .
1.4.3 Определитель матрицы
Поставим каждой матрице по определенному правилу в соответствие число и назовем его определителем матрицы.
Например:
Таким образом вычисляют определители двхмерной и трехмерной матриц. Эта схема вычисления называется мнемоническим правилом. Для четырехмерной матрицы не удобно составлять такие схемы. Существует строгое правило нахождения определителя матрицы n-го порядка. Но мы будем работать только с трехмерными матрицами.
Необходимо обратить внимание на то, что матрица пишется в круглых скобках, а определитель матрицы - в прямых.
Задача 1. Найти определители матриц А и из Примера.
Обратить внимание, на то что определитель матрицы не совпадает с определителем транспонированной матрицы.
Задача 2. Найти определители матриц.
1.4.4 Домашнее задание
Задача 3. Найти произведение матриц А и В из задачи 2. Вычислить определитель полученной матрицы.
Задача 4. Найти значение выражения . Матрицы из задачи 2.
Необходимо сказать, что последовательность выполнения операций, такая же как и для чисел, но первым выполняют транспонирование.
1.5 Пятый урок
1.5.1 Проверка домашнего задания
1.5.2 Обратная матрица
Опр. Если , то обозначают и пишут .
Где - матрица с единицами на главной диагонали и нулями на остальных местах. Показать главную диагональ.
Для того, чтобы найти обратную матрицу нам необходимо найти т.н. алгебраическое дополнение.
Пусть дана матрица
число
называется алгебраическим дополнением элемента . Алгебраическое дополнение можно найти для любого элемента матрицы.
Опр. Алгебраическим дополнением элемента называется произведение на определитель матрицы после вычеркивания из нее i-й строки и j-го столбца.
Теперь можно найти и обратную матрицу.
Задача 1. Найти обратную матрицу.
3.5.3 Домашнее задание
1.6 Шестой урок
1.6.1 Математическая постановка задачи
Итак, имеем две рисковые ц.б., заданные таблицей роста/падения цен и одну безрисковую, заданную процентом годовых. Необходимо сформировать портфель максимальной эффективности.
Доходность безрисковой ц.б. .
Если сегодня стоимость портфеля , а через год она окажется равной , то естественно назвать доходностью портфеля в процентах годовых. Т.е. доходность портфеля - это доходность на единицу стоимости.
Аналогично доходности всего портфеля находится доходность каждого вида акций. Т.е. нам нужно составить таблицу доходностей для ц.б. первого и второго видов. Например, для ц.б. первого вида доходность за первый год будет , за второй год - . Таким образом находим доходности за все 12 лет для каждого вида акций. Получаем таблицу с двумя столбцами и 11 строками.
Как правило, доходность бумаг колеблется во времени, так что будем считать ее случайной величиной. Найдем среднюю ожидаемую доходность и среднее квадратичное отклонение И назовем их соответственно эффективностью и риском i-ой ценной бумаги. Эффективностью портфеля назовем . Т.е. математическое ожидание доходности портфеля.А величину (1) (где -ковариация i-ой и j-ой с.в.) назовем риском рисковой части портфеля портфеля.
Обозначим - доля безрисковой ц.б. в портфеле. - вектор долей первой и второй ц.б. . Тогда естественно, должно выполнятся равенство . Пусть -ожидаемая эффективность бумаг. V- матрица ковариаций ценных бумаг. -риск портфеля.
Используя введенные обозначения, поставим математическую задачу. Как отмечалось выше: . Если возвести обе части равенства (1) в квадрат и записать в матричной форме, то получим . И теперь основное: необходимо добиться максимального значения эффективности портфеля, т.е. .
1.6.2 Решение задачи
Решение задачи найдем по формуле:
.
В результате проделанных операций получим двухмерный вектор - доли рисковых акций в портфеле. Доля безрисковой акции в портфеле найдется из равенства .
Находить решение поставленной задачи удобнее разбив формулу по действиям. Если учащиеся хорошо усвоили предыдущий материал, то вычисления не вызовут ни каких затруднений, т.к. не содержат нового материла.
1.7 Седьмой урок
Напомнить результаты постановку математической задачи. Записать результ, к которому пришли на прошлом уроке. Продолжить решение.
Доли акций могут оказаться больше 1, или даже отрицательными. Если доля акции отрицательная - необходимо пройзвести операцию short sale. Суть этой операции состоит в следующем: инвестор, формирующий портфель, обязуется через какое-то время поставить бумаги i-го вида (вместе с доходом, который они принесли бы владельцу за это время). За это он сейчас получает их денежный эквивалент. Эти деньги он присоединяет к своему капиталу и покупает рекомендуемые оптимальным решением ц.б. Т.к. ценные бумаги других видов более эффективны, то инвестор оказывается в выигрыше. Можно обойтись и без операции short sale, если инвестору доступны займы денежных средств по безрисковой ставке. Тогда налагают дополнительное условие
Заключение
В результате проделанной работы был составлен факультативный курс по теме "Оптимальный портфель ценных бумаг". Он позволяет учащимся профильных экономических классов глубже понять суть работы экономистов, увидеть тесную связь между математикой и экономикой, сделать профессиональный выбор. В ходе факультативных занятий школьники знакомятся с основными понятиями ТВиМС.
Факультатив содержит только необходимые для решения поставленной задачи (формирование оптимального портфеля Тобина максимальной эффективности из предложенных ценных бумаг) понятия. Однако, изученный материал позволяет сформировать у учащихся представление о ТВиМС.
Факультатив расчитан на 10, 11 профильные математические и экономические классы с высоким уровнем успеваимости. Проведенные в 10 экономическом классе МПГ №56 г.Гомеля занятия показали, что школьники способны усаваивать данный материал. Однако время уроков 2-6 необходимо увеличить до 2 академических часов.
Литература
1. Малыхин В.Н. "Оптимальный портфель и пакеты" м.: ОЛМА-ПРЕСС. 2000
2. Малыхин В.Н. "Финансовая математика" М.: ИНФРА-М, 1999
3. Маршалл Дж. "Финансовая инженерия" М.: ИНФРА-М, 1998
4. Малинковский Ю.В. Лекции по ТВиМС
5. Бузланов А.В. Лекции по алгебре и теории чисел
6. Журнал "Математика в школе", 1975-1985
Страницы: 1, 2