Рефераты. Роль умственного приема классификации в формировании математических понятий у младших школьников

p align="left">Учитель делает вывод о том, что это свойство (количество элементов каждого множества данного класса) и есть число 3.

Затем учитель показывает написание цифры 3, т.е. значка, с помощью которого изображается число три.

Следующий этап урока - закрепление. Учитель предлагает найти в классной комнате множество, содержащее по три элемента; выполнить с помощью заданной мерки измерение длины отрезка или площади геометрической фигуры, В этом случае число выступает в новом качестве: оно выражает отношение одной величины к другой. Так, выполняя задание по измерению емкости банки с помощью кружки, ученики получают натуральное число как результат отношения одной емкости к другой. Такой подход приводит к расширению понятия о положительном числе, так как результатом измерения может быть натуральное число, дробное число (положительное рациональное), иррациональное число. Таким образом, рассматривая с первого класса натуральное число как результат измерения величин, ученики постигают причины возникновения любого положительного действительного числа, что очень важно для последующего обучения в школе.

Пример 2. Тема урока "Число нуль".

Учитель задает вопросы типа: "Сколько холодильников в классе?", "Сколько грузовых автомобилей в классе?", Дети отвечают, что этого ничего нет. Тогда учитель говорит, что это соответствует числу нуль и можно записать с помощью цифры 0.

Аксиоматический подход к понятию "натуральное число" базируется на следующих основных (неопределяемых) понятиях: "натуральное число" с выделенным числом "О" (или "I") и "непосредственно следовать за..,".

В целом ряде книг за выделенное число принимается число 1. На наш взгляд целесообразнее выделять число 0, так как методика его введения аналогична методике выделения любого однозначного натурального числа (см. примеры 1 и 2). Кроме того, легче вводить тогда использование линейки.

Свойства этих основных понятий, соотношение между ними раскрываются в аксиомах Пеано (итальянский математик). Приведем некоторые из них.

Аксиома 1. Нуль непосредственно не следует ни за каким натуральным числом.

Эта аксиома формируется у учащихся при пользовании линейкой для измерения длины отрезка: учитель подчеркивает, что линейку надо прикладывать так, чтобы начало отрезка совпадало с делением 0.

Аксиома 2. Для любого натурального числа существует только одно натуральное число, которое непосредственно следует за ним.

Эта аксиома формируется у учащихся с помощью вопросов: "Какое число идет за числом V ? "Может ли за числом 2 идти число 5 ?"

Аксиома 3. Любое натуральное число непосредственно следует не более чем за одним натуральным числом.

Эта аксиома формируется у детей с помощью вопросов: "За каким числом идет число 5 ?", "Может ли число 5 идти за числом 3 ?", "За каким числом идет число О?"

Таким образом, аксиоматический подход к понятию натурального числа позволяет охарактеризовать следующие свойства натурального ряда чисел (порядковую структуру множества натуральных чисел).

1. Множество натуральных чисел бесконечно, с начальным элементом О и без конечного элемента.

2. Множество натуральных чисел упорядочено (любые два натуральных числа можно сравнить). "

3. Множество натуральных чисел дискретно (между двумя любыми натуральными числами можно поместить конечное множество натуральных чисел).

V. Операции над натуральными числами

Ранее уже неоднократно подчеркивалось, что в методике обучения операциям над натуральными числами следует отличать саму операцию от результата операции.

Смысл операций над натуральными числами и их законы формируются на теоретико-множественной основе. Нахождение результата операций раскрывается в аксиоматической теории. Так, операции сложения и умножения натуральных чисел базируется на следующих аксиомах

Операция сложения Операция умножения.

1. а + 0 = а; 3. а * 0 = 0;

2. а + b' я (а + b)' 4. а * b' = а ' b + а . Следствие: а + 1 = а' . Следствие: а * 1 =5 а .

Аксиомы 1 и 3 и следствия из этих аксиом ученики должны твердо знать Нахождение результата сложения (до таблиц сложения) определяется путем присчитывания по одному (т.е. используется первое следствие).

Нахождение результата умножения в начальных классах нельзя рассматривать с позиции аксиом 3 и 4. Поэтому в традиционной методике умножение рассматривается как частный случай сложения, что позволяет умножать натуральные числа только начиная с двух. Естественно, такой подход к операции умножения нельзя считать удачным, так как не позволяет найти результат умножения в таких случаях, как а * 1; а - 0;

(а/b) * (с/а).

В разделах I и III достаточно подробно рассмотрена операция умножения как мощность декартова произведения и как сумма одинаковых величин. Существует и другой подход к операции умножения, с позиции которого можно обосновать не только умножение натуральных чисел, начиная с двух, но и умножение на 1 и на 0, умножение обыкновенных дробей. Этот подход заключается в том, что умножение рассматривается как переход от одной единицы измерения к другой Сформировать у учащихся смысл операции умножения с этой позиции можно на таких практических работах.

Пример 1. Нужно измерить емкость банки сначала кружками, а потом стаканами (рис. 2.18). В ходе измерения получили 5 кружек или 15 стаканов. Учитель обращает внимание на то, что стаканами измерять долго, и задает

Рис. 2.18

вопрос: "Нельзя ли узнать, не измеряя, сколько стаканов в банке?" Дети предлагают для этого измерять стаканами кружку. Так как в банке 5 кружек (старая мерка) и в одной кружке 3 стакана (новая мерка), то в банке 5 * 3 = 15 (стаканов).

Пример 2. Учитель предлагает быстро пересчитать тетради. Ученики считают по две тетради (старая мерка) и получают 15 пар, поэтому в пачке 15 - 2 = 30 (тетрадей).

Пример 3. Ученикам предлагается быстро измерить полоску и даются две мерки: в 1 дм и в 1 см Дети меряют сначала большой меркой и получают число 4. Так как 1 дм содержит 10 см (новая мерка 1 см), то вся полоска содержит 4 * 10 = 40 (см).

Пример 4. Задача. Сколько нужно плиток кафеля, чтобы обложить такую же стенку, которая изображена на рис. 31? Дети считают сначала рядами (1 ряд -старая мерка), а потом -сколько в ряду плиток (1 плитка - новая мерка). Всего плиток 4 * 9 = 36. *

Умножение на 1 можно объяснить так: пусть в примере 1 в кружке помещается ровно один стакан, тогда в банке будет 5 * 1 = 5 (стаканов).

Умножение на 0 можно объяснить на примерах, в которых новая мерка значительно больше старой мерки и измеряемой величины.

Нахождение результата вычитания основывается на следующем определении.

Определение. Разностью из натурального числа " а " натурального числа " b " называется такое натуральное число " с ", что а = b + с.

Таким образом, вычитание рассматривается как действие обратное сложению. Это позволяет находить результат вычитания не только путем отсчитывания по одному, но и используя зависимость между компонентами операции сложения: 5 - 2 = (5 - 1) -1 и 2 + П =5.

Нахождение результата деления основывается на следующем определении.

Определение. Частным от деления натурального числа " а" на натуральное неравное нулю число " b " называется такое натуральное число " с ", что а * b == с.

Так как деление есть операция обратная умножению, то для нахождения результата деления используется зависимость между компонентами операции умножения: 3 *П=6. На этом же основывается и составление таблиц вычитания и деления:

а) 2+3=5; 5 - 2=3; . б) 2 * 3 = 6; 6:2=3.

Деление с остатком в начальных классах основывается на следующем определении.

Определение. Делением натурального числа " а " на натуральное число «b» с остатком называется отыскание такого частного q и остатка г , что а = b * q + г, где г < b.

Согласно этому определению, наряду с записью, например, 23 : 5 = 4 (остаток 3), ученикам должна даваться и такая запись: 23 = 5 * 4 + 3. Это

позволяет разнообразить примеры на деление с остатком: П =5*4+3 (проверка деления с остатком); 23 = П * 4 + П; 23 == 5 * О + О. Ученик + О. Учеников должны знать не только порядковую структуру множества натуральных чисел, которая была приведена выше, но и алгебраическую структуру натуральных чисел. Приведем ее.

1. В множестве натуральных чисел всегда выполнима операция сложения.

2. В множестве натуральных чисел всегда выполнима операция умножения.

3. а + b = b + а (переместительное свойство сложения).

4. а * b = b * а (переместительное свойство умножения).

5. (а + b) +с = а + (b +с) (сочетательное свойство сложения).

6. (а * b) * с =а * (b * с) (сочетательное свойство умножения).

7. (а+b) * с =а *с+b *с (распределительное свойство умножения относительно сложения).

8. а + 0 = а.

9. а * 0 = 0.

10.а + 1 = а'.

11. а * 1= а.

Операции над многозначными числами основываются на позиционной системе счисления.

Определение. Счислением (нумерацией) называется совокупность способов устного наименования и письменного обозначения чисел.

Существуют непозиционные и позиционные системы счисления.

В непозипионной системе счисления каждый знак (цифра) служит для обозначения одного и того же числа. Примером непозиционной системы счисления является римская нумерация, которой широко пользуются в настоящее время. Например, XII - это 10 + 1 + 1 =12.

Позиционная система счисления базируется на поместном значении цифр, заключающееся в том, что один и тот же знак (цифра) означает одно и то же число единиц разных разрядов независимо от того, на каком месте в записи числа стоит этот знак. Например, в числе 737 цифра 7 означает числа семь и семьсот.

Изучение темы "Нумерация чисел" учитель должен начинать с формирования представления о позиционной системе счисления, в которой дети не только знакомятся с существованием систем счисления с разными основаниями, но и понимают необходимость существования позиционной системы счисления. Это можно осуществить в ходе такой практической работы.

Пример 1. Дается задание измерить достаточно большой отрезок маленькой меркой (рис. 2.19). Дети уже знают, что лучше взять для измерения большую мерку, им предлагается тогда мерка, которая содержит 41маленьких мерки (большая мерка может содержать какое угодно число маленьких мерок, но обязательно целое их число). Ученики получили, например, что большая мерка поместилось 3 раза, а в остатке поместилось 2 маленькие мерки. В результате у них получилось число 32 с основанием системы счисления 4.

Рис. 2.19

В зависимости от длины измеряемого отрезка можно брать для измерения большие мерки, которые содержат по 2, 3, 4, 5, ... маленьких мерок. Тем самым, ученики приходят к выводу, что существуют позиционные системы счисления с различными основаниями. Далее можно провести беседу о существовании в практической деятельности человека систем счисления с основанием 7 (число дней в неделе), 12 (число месяцев в году), 100 (число лет в веке), 60 (число минут в часе) и т. д.

В традиционном обучении при изучении нумерации чисел у учащихся отрабатываются понятия "десятки", "сотни", что приводит к смешению устной нумерации и письменной. Этого нельзя делать, потому, что это может привести к ошибкам. Например, дети часто говорят, что в числе 325 два десятка (вместо - 32 десятка), В дальнейшем это приводит к затруднениям в выполнении операций над многозначными числами, которые базируются на операциях над однозначными числами. Поэтому при изучении многозначных чисел нужно обращать внимание детей на разряды и на число единиц в разрядах. Например, в числе 6325 шесть единиц четвертого разряда, три единицы третьего разряда, две единицы второго разряда и пять единиц первого разряда. Такая работа позволит ученикам легче и быстрее усвоить операции над многозначными числами, которые производятся над разрядами. Законы операций над многозначными числами должны использоваться учителем для формирования вычислительных навыков.

VI. Числовые выражения. Числовые равенства и неравенства, их свойства

Любое число уже является числовым выражением. Если А и В -числовые выражения, то А + В, А - В, А * В, А : В также являются числовыми выражениями. Выполнив операции; которые имеют место в числовом выражении, получают значение числового выражения. Существуют выражения, которые не имеют значения. Например, выражение 28 ; 8 - 44 не имеет числового значения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.