Рефераты. Биологическая роль витаминов, липидов, процессов брожения

p align="left">"Насыщенность ниацинами" пищевых продуктов определяется как концентрация в них никотиновой кислоты, образованной в результате превращения находящегося в пище триптофана в ниацин. Ниацин является членом семейства витаминов В.

Основные природные источники

Никотинамид и никотиновая кислота широко распространены в природе. В растениях чаще содержится никотиновая кислота, в то время как в животных организмах чаще содержится никотинамид.

Дрожжи, печень, мясо птицы, орехи и бобовые растения - основной источник ниацина среди пищевых продуктов. В меньшем количестве они содержатся в молоке и листьях овощей.

В зерновых продуктах (пшеница, кукуруза) никотиновая кислота связана с некоторыми компонентами, содержащимися в крупе, и поэтому не обладает биологической активностью. Особые методы обработки, как например, обработка зерна водным раствором щёлочи или извести повышают биологическую активность никотиновой кислоты, содержащейся в этих продуктах.

Триптофан, как аминокислота, являющаяся предшественником (или провитамином) ниацина, ответственна за две трети общей биологической активности необходимой для нормального пищевого рациона взрослых. Важными источниками триптофана являются мясо, молоко и яйца.

Пантотеновая кислота

Синонимы

Пантотеновая кислота относится к группе витаминов В. Ее название в переводе с греческого означает "повсюду". Прежние названия-синонимы: витамин В5, антидерматитный фактор цыплят, антипеллагрический фактор цыплят. В природе встречается в форме D-пантотеновой кислоты.

Основные природные источники

Пантотеновая кислота широко представлена в продуктах питания, главным образом в составе кофермента А (кофермент ацетилирования). Его особенно много в дрожжах и в органах животных (печень, почки, сердце, мозг) , но, по-видимому, обычным источником его поступления в организм являются яйца, молоко, овощи, бобовые и цельные зерновые продукты. В пище, подвергнутой обработке, количество пантотеновой кислоты будет снижено, если конечно эта потеря не возмещается впоследствии. Пантотеновая кислота синтезируется микроорганизмами кишечника, но количество вырабатываемой ими пантотеновой кислоты и его роль в питании человека до конца не выяснены.

Основные антагонисты

Этанол вызывает снижение количества пантотеновой кислоты в тканях при сопутствующем увеличении ее уровня в сыворотке. Эти данные дают основание предполагать, что утилизация пантотеновой кислоты у страдающих алкоголизмом нарушена.

Наиболее известным антагонистом пантотеновой кислоты, который используется в эксперименте для ускорения проявления признаков дефицита витамина, является омега-метил пантотеновая кислота. Кроме того, в экспериментах на животных было показано, что L-пантотеновая кислота также вызывает антагонистическое действие.

Метил-бромид, фумигант, используемый для борьбы с паразитами в местах хранения продуктов питания, вызывает разрушение пантотеновой кислоты в пище, которая подвергается воздействию этого фумиганта.

Помимо этих двух главных групп витаминов, выделяют группу разнообразных химических веществ, из которых часть синтезируется в организме, но обладает витаминными свойствами. Для человека и ряда животных эти вещества принято объединять в группу витаминоподобных. К ним относят холин, липоевую кислоту, витамин В15 (пангамовая кислота) , оротовую кислоту, инозит, убихинон, парааминобензойную кислоту, кар-нитин, линолевую и линоленовую кислоты, витамин U (противоязвенный фактор) и ряд факторов роста птиц, крыс, цыплят, тканевых культур. Недавно открыт еще один фактор, названный пирролохинолинохиноном. Известны его коферментные и кофакторные свойства, однако пока не раскрыты витаминные свойства.

2. Липиды

Группа разнородных по химическому строению органических веществ, которые характеризуются следующими признаками:

-нерастворимость в воде

-растворимость в неполярных растворителях (эфир, хлороформ, бензол)

-содержание высших алкильных радикалов

-распространенность в живых организмах

А. Простые - состоят из 2 компонентов (сложные эфиры жирных кислот с различными спиртами)

1. жиры (глицериды) -сложные эфиры глицерина и высших жирных кислот

2. воска-эфиры жирных кислот и одноатомные или двухатомные спирты с С12-С22

Жирные кислоты-монокарбоновые кислоты с одной алифатической цепью. ЖК природных липидов содержат четкое число атомов С, не растворимы в воде, температура плавления понижается с увеличением числа двойных связей и укорочением цепи.

Жиры могут быть простыми (одинаковые остатки ЖК) и смешанными (остатки разных ЖК)

Физико-химические свойства определяются свойствами входящих ЖК.

Состав и количество жира характеризуется:

-йодное число-количество групп ЙОД2, которые связываются 100гр жира (характеризует степень ненасыщенности жира)

-кислотное число-количество мг КОН, необходимое для нейтирализации 1г жира (указывает на количество свободных ЖК в жире)

-число омыления-количество мг КОН, необходимое для нейтрализации всех ЖК, входящих в состав жира.

Б. Сложные - сложные эфиры ЖК со спиртами, дополнительно содержащие и другие группы.

1. Фосфолипиды -содержат остаток Н3РО4

-глицерофосфолипиды-в роли спирта-глицерол, обладающий амфипатичностью (гидрофобные ЖК+гидрофильный остаток Н3РО4 и др). Плазмалогены-в мозге, мышцах, эритроцитах. Кардиолипин-в сердце.

-сфинголипиды-содержат сфингозин

2. Гликолипиды (гликосфинголипиды) -широко представлены в тканях, особенно нервной. Цереброзиды и глобозиды.

3. Стероиды - не гидролизуются

Холестерин-источник образования в организме млекопитающих желчных кислот и стероидных гормонов. Эргостерин-предшественник витамина Д.

4. Другие сложные липиды: сульфолипиды, аминолипиды, липопротеины.

Функции:

-энергетическая-запасание и хранение энергии (нейтрализация жира). При расщеплении 1г жира выделяется 9ккал или 38кДж.

-защитная-липидный слой кожи живых существ, защищает от механических и температурных воздействий.

-структурная - является строительным компонентом клеточных мембран

-регуляторная-некоторые гормоны имитируют липидную природу (половые)

3. Процесс брожения и его типы

Брожение (тж. сбрамживание, ферментамция) -- это, анаэробный метаболический распад молекул питательных веществ, например глюкозы, без окисления в чистом виде. Брожение не высвобождает всю имеющуюся в молекуле энергию; оно просто позволяет продолжаться гликолизу (процесс, выходом которого на одну молекулу глюкозы являются две молекулы АТФ) , восполняя восстановленные коферменты.

Брожение -- это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования, способного поддерживать генерацию АТФ в процессе гликолиза. Стандартные примеры продуктов брожения: этанол (питьевой спирт) , молочная кислота и водород, такие как масляная кислота и ацетон этанол, углекислый газ, другие продукты, а далее - молочная кислота, уксусная кислота, этилен и другие восстановленные метаболиты. Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамид аденин динуклеотид (NAD+) , который требуется для гликолиза. Это важно для нормальной клеточной деятельности, поскольку гликолиз -- единственный источник АТФ в анаэробных условиях.

Получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пуриват полносью окисляется до двуокиси углерода. Однако, даже у позвоночных ферментация используется как эффективный способ получения энергии во время коротких периодов интенсивного напряжения, когда перенос кислорода к мышцам недостаточен для поддержания аэробного метаболизма. Тогда как ферментация помогает во время коротких периодов интенсивного напряжения, она не предназначена для длительного использования. Например, у людей ферментация молочной кислоты дает энергию на период от 30 секунд до 2 минут. Скорость генерации АТФ примерно в 100 раз больше, чем при окислительном фосфорилировании. Уровень pH в цитоплазме быстро падает, когда в мышце накапливается молочная кислота, в конечном итоге сдерживая ферменты, вовлеченные в процесс гликолиза

Спиртовое брожение -- это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия.

Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы. Сбраживаться могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу).

Схематично спиртовое брожение может быть изображено уравнением

С6Н12О6 -> 2С2Н5ОН + 2С02 + 23, 5 * 104 дж

глюкоза- этиловый спирт+углекислота+энергия. Процесс спиртового брожения -- многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пировиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся.

При спиртовом брожении пировиноградная кислота превращается в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется С02 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД-H2. Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом -- соединение, от которого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями. Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.

Молочнокислое брожение

При молочнокислом брожении конечным продуктом является молочная кислота. Этот вид брожения осуществляется с помощью молочнокислых бактерий, которые подразделяются на две большие группы (в зависимости от характера брожения) : гомоферментативные, образующие из сахара только молочную кислоту, и гетероферментативные, образующие, кроме молочной кислоты, спирт, уксусную кислоту, углекислый газ. Гомоферментативное молочнокислое брожение вызывают бактерии рода Lactobacillus и стрептококки. Они могут сбраживать различные сахара с 6-ю (гексозы) или 5-ю (пентозы) углеродными атомами, некоторые кислоты. Однако круг сбраживаемых ими продуктов ограничен. У молочнокислых бактерий нет ферментативного аппарата для использования кислорода воздуха. Кислород для них или безразличен, или угнетает развитие.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.