Рефераты. Биологическая роль витаминов, липидов, процессов брожения

p align="left"> Молочнокислое брожение может бытьописаноуравнением

С6Н12О6 -> 2СН3*CНОН*СООН+21, 8-104 дж

глюкоза молочная кислота энергии. Глюкоза также расщепляется до пировиноградной кислоты. Но затем ее декарбоксилирование (отщепление С02) , как при спиртовом брожении, не происходит, так как молочнокислые бактерии лишены соответствующих ферментов. У них активны дегидрогеназы (НАД). Поэтому пировиноградная кислота сама (а не уксусный альдегид, как при спиртовом брожении) принимает водород от восстановленной формы НАД и превращается в молочную кислоту. В процессе молочнокислого брожения бактерии получают энергию, необходимую им для развития в анаэробных условиях, где использование других источников энергии затруднено. Гетероферментативное молочнокислое брожение -- процесс более сложный, чем гомоферментативное: сбраживание углеводов приводит к образованию ряда соединений, накапливающихся в зависимости от условий процесса брожения. Одни бактерии образуют, помимо молочной кислоты, этиловый спирт и углекислоту, другие -- уксусную кислоту; некоторые гетероферментативные молочнокислые бактерии могут образовывать различные спирты, глицерин, маннит.

Гетероферментативное молочнокислое брожение вызывают бактерии рода Lactobacterium и рода Streptococcus. Гетероферментативные бактерии образуют молочную кислоту иным путем. Последняя стадия -- восстановление пировиноградной кислоты до молочной -- та же самая, что и в случае гомоферментативного брожения. Но сама пировиноградная кислота образуется при ином расщеплении глюкозы -- гексозомонофосфатном. Выход энергии гораздо меньше, чем при спиртовом брожении.

Гетероферментативные бактерии сбраживают ограниченное число веществ: некоторые гексозы (причем определенного строения) , пентозы, сахароспирты и кислоты.

Молочнокислое брожение широко используется при выработке молочных продуктов: простокваши, ацидофилина, творога, сметаны. При производстве кефира, кумыса наряду с молочнокислым брожением, вызываемым бактериями, имеет место и спиртовое брожение, вызываемое дрожжами. Молочнокислое брожение происходит на первом этапе изготовления сыра, затем молочнокислые бактерии сменяются пропионовокислыми.

Молочнокислые бактерии нашли широкое применение при консервировании плодов и овощей, в силосовании кормов. Чистое молочнокислое брожение применяется для получения молочной кислоты в промышленных масштабах. Молочная кислота находит широкое применение в производстве кож, красильном деле, при выработке стиральных порошков, изготовлении пластмасс, в фармацевтической промышленности и во многих других отраслях. Молочная кислота также нужна в кондитерской промышленности и для приготовления безалкогольных напитков.

Маслянокислое брожение

Превращение углеводов с образованием масляной кислоты было известно давно. Природа маслянокислого брожения как результат жизнедеятельности микроорганизмов была установлена Луи Пастером в 60-х годах прошлого века. Возбудителями брожения являются маслянокислые бактерии, получающие энергию для жизнедеятельности путем сбраживания углеводов. Они могут сбраживать разнообразные вещества -- углеводы, спирты и кислоты, способны разлагать и сбраживать даже высокомолекулярные углеводы -- крахмал, гликоген, декстрины.

Маслянокислое брожение в общем виде описывается уравнением

C6H12О6->СН3*CН2*СООН+2С02+2Н2

глюкоза масляная кислота. При этом брожении накапливаются различные побочные продукты. Наряду с масляной кислотой, углекислым газом и водородом образуются этиловый спирт, молочная и уксусная кислоты. Некоторые маслянокислые бактерии, кроме того, образуют ацетон, бутанол и изопропиловый спирт.

Брожение начинается с процесса фосфорилирования глюкозы и далее идет по гликолитическому пути до стадии образования пировиноградной кислоты. Затем образуется уксусная кислота, которая активируется ферментом. После чего при конденсации (соединении) из двууглеродного соединения получается четырехуглеродная масляная кислота. Таким образом, при маслянокислом брожении происходит не только разложение веществ, но и синтез. По данным В. Н. Шапошникова, в маслянокислом брожении различаются две фазы. В первой параллельно с увеличением биомассы накапливается уксусная кислота, а масляная кислота образуется преимущественно во второй фазе, когда синтез веществ тела замедляется.

Маслянокислое брожение происходит в природных условиях в гигантских масштабах: на дне болот, в заболоченных почвах, илах и всех тех местах, куда ограничен доступ кислорода. Благодаря деятельности маслянокислых бактерий разлагаются огромные количества органического вещества. Спиртовое, гомоферментативное молочнокислое и маслянокислое брожения являются основными типами брожений. Все другие виды брожений представляют собой комбинацию этих трех типов.

Итак, три основных типа брожения органически связаны между собой -- начальные пути разложения углеводов у них одинаковы. Процессы дыхания и брожения являются основными источниками энергии, необходимыми микроорганизмам для нормальной жизнедеятельности, осуществления процессов синтеза важнейших органических соединений.

4. Физико-химические свойства белков. Уровни организации белковых молекул

Полимеры. %0%от сухого вещества клетки (всегда С, Н, О2, азот, почти всегда сера).

Большая молярная масса. Структурная единица-аминокислота. Белки-полипептиды. Каждая белковая молекула характеризуется определенной последовательностью аминокислот, которая определяется структурой гена, кодирующего данный белок.

Боагодаря наличию амино- и карбоксильных групп белкиобладают амфотерными свойствами. Для каждого белка существует значение рН, при котором суммарный электрический заряд=0 -изоэлектрическая точка (значение рН определяется числом его моногенных групп и величиной константы ионизации). рН примерно=5, 5

Гидратация-связывание диполей воды с ионами и полярными группами аминокислот.

Денатурация-потеря наитивных свойств белка из за нарушения химических связей.

1. Простые белки:

-протамины и гистоны-в ядрах сперматозоидов у рыб и птиц (повышенное содержание АК, особенно аргенин)

-альбумины - животные и растительные ткани, белок яиц, сыворотка крови, молоко, семена растений.

-глобулины - глобулярные белки, растворимы в слабых растворах нейтральных солей, разбавленных в кислотах и щелочах. Обуславливают буферную емкость цитоплазмы, плазмы крови и иммунные свойства организма (не растворим в воде)

-глютеины, проламины - семена злаков, зеленые части растений (растворяются в разбавленных растворах щелочей) , высокое содержание глутаминовой кислоты и наличие лизина.

-протеноиды - белки опорных клеток, фибриллярный коллаген, кератин.

2. Сложные белки:

-хромопротеины - содержат окрашенные простатические группы:

А) гемопротеины (содержатжелезо) -цитохромы, некоторые ферменты (каталаза, пероксидаза) , гемоглобин, миоглобин

Б) дыхательные пигменты крови-гемеритрины

В) флавопротеиды - переночсики электронов, важная роль в ОВ реакциях.

-гликопротеины - почти во всех тканях, в жидкостях животных. Содержат обычный набор АК с преобладанием серина и треонина.

Муцины-секреты слизистых желез

Мукоиды-входит в состав опорных тканей

Многие белки плазмы крови, групповые свойства крови, некотоые ферменты и гормоны.

-липопротеины - комплекс белков и липидов (биологическая мембрана)

-фосфопротеины - входи фосфорная группа, присоединяется к АК-остаткам. Обычно к ферментам через остаток серина и треонина.

-металлопротеины - ферментативное дыхание (в составе микроэлемнов) , в гормонах

-нуклеопротеины - комплексы НК с белками. Состоит из основания и углеродного компонента:сахара, рибозы иди дизоксирибозы.

Функции:

1. каталитическая-катализируют протекание химических реакций.

2. защитная - основную функцию защиты выполняет иммунная система, которая обеспечивает синтез белков-антител.

3. структурная-основное вещество хрящей, костей, кожи.

4. регуляторная-многие гормоны-белковой природы

5. поддержание коллоидно-осмотического давления и кислотно-щелочного равновесия

6. гомеостаз

7. энергетическая (АТФ)

8. транспотр-гемоглобин

Уровни организации:

Первичная структура-линейная последовательность АК-остатков в полипептидной цепи.

Вторичная структура-пространственная структура, образующаяся в результате укладки полипептидной цепи определенным образом:

б-спираль -водородные связи между NH-на одном витке и СО-на другом.

в-спираль-водородные связи между параллельными слоями

Хотя эти связи не очень прочные, их много>прочная связь

Третичная структура-трухмерная структура, образуется за счет взаимодействия между радикалами АК, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи. Гидрофобные радикалы внутри глобулы, гидрофильные-на поверхности (определяют растворимость в воде)

Четвертичная структура-характерна для сложных белков, состоит из 2 и более полипептидных цепей, не связанных ковалентными связями, а также для белков, содержащих небелковые компоненты. Под 4 структурой понимается пространственное расположение этих компонентов.

5. Способы очистки белков и определение кинетики ферментативной реакции

Для подробного исследования физико-химических и биологических свойств белков, а также для изучения их химического состава и структуры непременным условием является получение белков из природных источников в химически чистом, гомогенном состоянии. Последовательность операций по выделению белков обычно состоит в следующем: измельчение биологического материала (гомогенизация) ; извлечение белков, точнее, перевод белков в растворенное состояние (экстракция) ; выделение исследуемого белка из смеси других белков, т. е. очистка и получение индивидуального белка.

Белковые вещества весьма чувствительны к повышению температуры и действию многих химических реагентов (органические растворители, кислоты, щелочи). Поэтому обычные методы органической химии, применяемые для выделения того или иного вещества из смеси (нагревание, перегонка, возгонка, кристаллизация и др.), в данном случае неприемлемы. Белки в этих условиях подвергаются денатурации, т. е. теряют некоторые существенные природные (нативные) свойства, в частности растворимость, биологическую активность. Разработаны эффективные методы выделения белков в «мягких» условиях, при низкой температуре (не выше 4°С), с применением щадящих нативную структуру химических реагентов.

Перед выделением белков из биологических объектов (органы и ткани животных, микроорганизмы, растения) исследуемый материал тщательно измельчают до гомогенного состояния, т. е. подвергают дезинтеграции вплоть до разрушения клеточной структуры.

Успешно применяется также метод попеременного замораживания и оттаивания ткани, в основе действия которого лежит разрушение клеточной оболочки, вызванное кристаллами льда. Для дезинтеграции тканей используют также ультразвук, пресс-методы (замороженный биоматериал пропускают через мельчайшие отверстия стального пресса под высоким давлением) и метод «азотной бомбы», при котором клетки (в частности, микробные) сначала насыщают азотом под высоким давлением, затем резко сбрасывают давление - выделяющийся газообразный азот как бы «взрывает» клетки.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.