Рефераты. Биосинтез 2Н-меченого бактериородопсина галофильной бактерией Halobacterium halobium

p align="left"> В условиях щелочного гидролиза (4 н. Ba(OH)2 или 4 н. NaOH, 1100C, 24 ч) реакций изотопного обмена водорода практически не наблюдается (исключением является протон (дейтерон) у атома С2 гистидина, а триптофан не разрушается, что определило выбор метода гидролиза в настоящей работе. Упрощение процедуры выделения смеси свободных аминокислот за счет нейтрализации серной кислотой явилось причиной выбора в качестве гидролизующего агента 4 н. Ba(OH)2. Возможная D,L-рацемизация аминокислот при щелочном гидролизе не влияла на результат последующего масс-спектрометрического исследования уровня дейтерированности молекул аминокислот.

Таблица. Величины пиков (М)+ в масс-спектре электронного удара метиловых эфиров N- Dns-[2, 3, 4, 5, 6-2H5]фенилаланина, N-Dns-[3, 5-2H2]тирозина и N-Dns-[2, 4, 5, 6, 7-2H5]триптофана.

Соединение

Величина пика (М)+

Интенсив-ность, %

Количество атомов дейтерия

Уровень дейтерированности, % от общего количества атомов водорода

N- Dns-[2, 3, 4, 5, 6-2H5]Phe-Ome

413

414

415

416

417

418

7

18

15

11

14

6

1

2

3

4

5

6

13

25

38

50

63

75

N-Dns-[3, 5-2H2]Tyr-OMe

428

429

430

12

15

5

1

2

14

29

N-Dns-[2, 4, 5, 6, 7-2H5]Trp-OMe

453

454

455

456

457

5

6

9

11

5

2

3

4

5

6

26

38

50

64

77

Для изучения уровня дейтерированности 2H-меченого БР использовали метод масс-спектрометрии электронного удара (чувствительность 10-8-10-10 моль анализируемого вещества [18]) после модификации смеси свободных аминокислот гидролизата БР в метиловые эфиры N-Днс-производных аминокислот. Чтобы получить воспроизводимый результат по уровню дейтерированности 2Н-меченого белка, сначала регистрировали полный скан масс-спектр электронного удара смеси метиловых эфиров N-Днс-производных 2Н-меченых аминокислот, по пикам молекулярных ионов которых (М)+ рассчитывали уровень дейтерированности молекулы. Затем проводили разделение метиловых эфиров N-Днс-производных ароматических аминокислот обращенно-фазовой ВЭЖХ и получали масс-спектры электронного удара для каждой индивидуальной аминокислоты. Полный масс-спектр электронного удара смеси метиловых эфиров N-Днс-производных аминокислот, показанный на рис. 4 (сканирование при m/z 50-640, базовый пик m/z 527, 100%), отличался непрерывностью, пики в интервале m/z от 50 до 400 на шкале массовых чисел представлены фрагментами метастабильных ионов, низкомолекулярных примесей, а также продуктами химической модификации аминокислот. Анализируемые 2Н-меченые ароматические аминокислоты, занимающие шкалу массовых чисел m/z от 415 до 456 представлены смесями молекул с различным количеством включенных атомов дейтерия, поэтому молекулярные ионы (М)+ полиморфно расщеплялись на отдельные кластеры со статистическим набором значений m/z зависимости от количества водородных атомов в молекуле. Учитывая эффект изотопного полиморфизма, подсчет уровня дейтерированности молекул аминокислот проводили по наиболее распространенному пику молекулярного иона (М)+ в каждом кластере с математически усредненной величиной (М)+ (рис. 4) для фенилаланина пик молекулярного иона определялся (М)+ при m/z 417, 14% (вместо (М)+ при m/z 412, 20% для немеченого производного (пики немеченых аминокислот не показаны)), тирозина (М)+ при m/z 429, 15% (вместо (М)+ при m/z 428, 13%), триптофана (М)+ при m/z 456, 11% (вместо (М)+ при m/z 451, 17%). Уровень дейтерированности, соответствующий увеличению молекулярной массы составил для тирозина два, фенилаланина и триптофана пять атомов дейтерия. Полученные данные по уровню дейтерированности фенилаланина, тирозина и триптофана позволяют сделать вывод о высокой селективности включения 2H-меченых ароматических аминокислот в молекулу БР: дейтерий детектировался во всех остатках ароматических аминокислот (таблица). Обсуждая полученные результаты, необходимо подчеркнуть, что присутствие в масс-спектре пиков (M)+ протонированных и полудейтерированных аналогов фенилаланина с (M)+ при m/z 413-418, тирозина с (M)+ при m/z 428-430 и триптофана с (M)+ 453-457 с различными вкладами в уровни дейтерированности молекул, свидетельстствует о сохранении небольшой доли минорных путей биосинтеза de novo, приводящим к разбавлению дейтериевой метки и, по-видимому, определяется самими условиями биосинтеза 2Н-меченного БР (таблица).

Согласно данным масс-спектрометрического анализа, пики молекулярных ионов (М)+ метиловых эфиров N-Днс-производных ароматических аминокислот обладали очень низкой интенсивностью и полиморфно расщеплялись, поэтому области их молекулярного обогащения были сильно уширены. Кроме этого, масс-спектры компонентов смеси аддитивны, поэтому смеси можно анализировать, только если имеются спектры различных компонентов, записанные в тех же условиях [8]. Проводимые вычисления предусматривают решение системы из n уравнений с n неизвестными для смеси из n компонентов. Для компонентов, концентрация которых превышает 10 мол.%, правильность и воспроизводимость результатов анализа составляет +0.5 мол.% (при доверительной вероятности 90%). Поэтому для получения воспроизводимого результата необходимо хроматографически выделять индивидуальные производные 2Н-меченых аминокислот из белкового гидролизата. Для решения поставленной задачи использовали метод обращенно-фазовой ВЭЖХ на октадецилсилановом селикагеле силасорб С18, эффективность которого подтверждалась разделением смеси метиловых эфиров N-Днс-производных 2Н-меченых аминокислот из других микробных объектов, как метилотрофные бактерии и микроводоросли [19]. Метод удалось адаптировать к условиям хроматографического разделения смеси метиловых эфиров N-Днс-производных аминокислот гидролизата БР, заключающийся в оптимизации соотношения элюентов, форме градиента и скорости элюции с колонки. Наилучшее разделение достигалось при градиентной элюции метиловых эфиров N-Dns-производных аминокислот смесью растворителей ацетонитрил : трифторуксусная кислота = 100 : 0.1 - 0.5, об.%. При этом удалось разделить триптофан и трудно разрешимую пару фенилаланин/тирозин. Степени хроматографической чистоты выделенных метиловых эфиров N-Днс-[2, 3, 4, 5, 6-2H5]фенилаланина, N-Днс-[3, 5-2H2]тирозина и N-Днс-[2, 4, 5, 6, 7-2H5]триптофана составили 89, 91 и 90% при выходах 78-85%. Полученный результат подтвердил рис. 4, б на котором приведен масс-спектр электронного удара метилового эфира N-Днс-[2, 3, 4, 5, 6-2H5]фенилаланина, выделенного обращенно-фазовой ВЭЖХ (сканирование при m/z 70-600, базовый пик m/z 170, 100%) (масс-спектр приведен относительно немеченого метилового эфира N-Днс-фенилаланина (а), сканирование при m/z 150-700, базовый пик m/z 250, 100%). Доказательством включения дейтерия в молекулу фенилаланина является пик тяжелого молекулярного иона метилового эфира N-Днс-фенилаланина ((М)+ при m/z 417, 59% вместо (М)+ при m/z 412, 44% для немеченого производного фенилаланина) и дополнительный пик бензильного фрагмента фенилаланина С7Н7+ при m/z 96, 61% (вместо m/z 91, 55% в контроле (не показан)) (рис. 5, б). Пики второстепенных фрагментов различной интенсивности со значениями m/z 249, 234 и 170 принадлежат к продуктам вторичного распада дансильного остатка до N-диметиламинонафталина, низкоинтенсивный пик (M COOCH3)+ при m/z 358, 7% (m/z 353, 10%, контроль) является продуктом отщепления карбоксиметильной СООСН3-группы из метилового эфира N-Днс-фенилаланина, а пик (M + CH3)+ при m/z 430, 15% (m/z 426, 8%, контроль) продуктом дополнительного метилирования по -аминогруппе фенилаланина (рис. 5, б). Согласно данным масс-спектра, разница между молекулярной массой легкого и тяжелого пиков [M]+ метилового эфира N-Днс-фенилаланина составляет пять единиц, что совпадает с полученными ранее данными по уровню дейтерированности исходного [2, 3, 4, 5, 6-2H5]фенилаланина, добавляемого в среду выращивания (масс-спектрометрические данные по уровням дейтерированности [2, 3, 4, 5, 6-2H5]фенилаланина, [3, 5-2H2]тирозина и [2, 4, 5, 6, 7-2H5]триптофана подтверждены спектроскопией 1Н ЯМР и находятся в корреляции).

Полученные экспериментальные данные, свидетельствуют о высокой эффективности включения дейтерия в молекулу БР. Планируется использовать полученные дейтерированные препараты БР для реконструкции в 2Н2О функционально активных систем мембранных белков с очищенными 2Н-мечеными жирными кислотами и другими биологически активными соединениями.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования служил каротиноидсодержащий штамм экстремальных галофильных бактерий Halobacterium halobium ЕТ 1001, полученный Яном Раапом (Лейденский университет, Голландия). Штамм модифицирован селекцией отдельных колоний на твердой (2% агар) пептоновой среде с 4.3 М NaCl [20].

В работе использовали D,L-аминокислоты (Reanal, Венгрия), АМФ и УМФ (Sigma, США). Для синтеза производных аминокислот использовали N-диметиламинонафталин-5-сульфохлорид (Днс-хлорид) (Sigma, США) и диазометан, получаемый из N-нитрозометилмочевины (Merck, ФРГ). L-[2, 3, 4, 5, 6-2H5]фенилаланин (90 ат.% 2Н), L-[3, 5-H2]тирозин (96 ат.% 2Н) и L-[2, 4, 5, 6, 7-2H5]триптофан (98 ат.% 2Н) (способы получения указаны в работах [21, 22]) предоставлены к. х. н. А. Б. Пшеничниковой (МГАТХТ). Масс-спектры метиловых эфиров N-Днс-производных аминокислот получали методом электронного удара на приборе Hitachi MB-80 A (Япония) при энергии ионизирующих электронов 70 эВ, ускоряющем напряжении 8 кВ и температуре катодного источника 180-2000С. Сканирование анализируемых образцов проводили при разрешении 7500 усл. ед., используя 10%-ную резкость изображения. Спектры 1Н-ЯМР регистрировали в 2Н2О на приборе Bruckman WM-250 (ФРГ) с рабочей частотой 70 МГц, химические сдвиги протонов () приведены в миллионных долях по отношению к Ме4Si. УФ-спектры регистрировали на спектрофотометре Beckman DU-6 (США) в диапазоне длин волн 200-750 нм. Центрифугирование осуществляли на центрифуге Т-24 (Германия) с охлаждением при -40С. Обращенно-фазовую ВЭЖХ проводили на жидкостном хроматографе Knauer (ФРГ), снабженным насосом Knauer, УФ-детектором UF-2563 и интегратором Shimadzy СR-3A (Япония), используя колонку 250 x 10 мм с неподвижной обращенной фазой сепарон С18 (Kova, Чехоcловакия); элюент: (А) ацетонитрил : трифторуксусная кислота = 100 : 0.1 - 0.5, об.% и (В) ацетонитрил = 100 об.%; скорость элюции 1.5 мл/мин: от 0 до 20% В 5 мин, от 20 до 100% В 30 мин, 100% В 5 мин, от 100 до 0% В 2 мин, 0% В 10 мин. ТСХ проводили на хроматографических пластинках с закрепленным слоем флуоресцентного носителя Silufol UV-254 (Kavalier, Чехословакия) в системе (Г): н-бутанол : уксусная кислота : вода = 12 : 3 : 5, об.%. Электрофорез проводили в 12.5% ПААГ с 0.1% ДДС-Na в соответствие с протоколом фирмы LKB (Швеция). Количественное определение содержания белка выполняли сканированием прокрашенного в растворе кумасси-голубой R-250 электрофоретического геля на лазерном денситометре Beckman CDS-200 (США). Бактериальный рост изучали по оптической плотности бактериальной суспензии, измеренной при 540 нм на спектрофотометре Beckman DU-6 (США). Процедура выделения БР проводилась с использованием светозащитной лампы, снабженной оранжевым светофильтром ОРЖ -1X (200 x 0.5 мм).

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.