Рефераты. Центрифугирование

p align="center">2.5.2 Методика создания ступенчатого градиента плотности

Для создания градиента плотности в центрифужную пробирку осторожно вносят при помощи пипетки несколько растворов с последовательно уменьшающейся плотностью. Затем на самый верхний слой, имеющий наименьшую плотность, наслаивают образец в виде узкой зоны, после чего пробирку центрифугируют. Получить плавные линейные градиенты можно за счет сглаживания ступенчатых градиентов при длительном стоянии раствора. Процесс можно ускорить, осторожно перемешивая содержимое пробирки проволокой или слегка покачивая пробирку.

2.5.3 Методика создания плавного градиента плотности

В большинстве случаев для создания плавного градиента плотности пользуются специальным устройством. Оно состоит из двух цилиндрических сосудов строго определенного одинакового диаметра, сообщающихся друг с другом в нижней части с помощью стеклянной трубки с контрольным клапаном, что позволяет регулировать пропорции, в которых смешивается содержимое обоих сосудов. Один из них снабжен мешалкой и имеет выходное отверстие, через которое раствор стекает в центрифужные пробирки. Более плотный раствор помещают в смеситель; второй цилиндр заполняют раствором меньшей плотности. Высота столбика растворов в обоих цилиндрах устанавливается таким образом, чтобы гидростатическое давление в них было одинаковым. Более плотный раствор постепенно выпускается из смесителя в центрифужные пробирки и одновременно замещается равным объемом раствора меньшей плотности, поступающего в смеситель из второго цилиндра через контрольный клапан. Гомогенность раствора в смесителе обеспечивается за счет постоянного перемешивания раствора с помощью мешалки. По мере сливания раствора в центрифужные пробирки плотность его уменьшается и в пробирках создается линейный градиент плотности. Нелинейные градиенты можно создавать при помощи системы, состоящей из двух цилиндров неодинакового диаметра.

Для формирования градиентов плотности различной крутизны пользуются системой из двух механически управляемых шприцов, которые заполняют растворами неодинаковой плотности. Различные градиенты можно создавать, изменяя относительную скорость движения поршней.

2.5.4 Извлечение градиентов из центрифужных пробирок

После завершения центрифугирования и разделения частиц необходимо извлечь образовавшиеся зоны. Это делают несколькими способами, чаще всего методом вытеснения. Центрифужную пробирку прокалывают у основания и в нижнюю ее часть медленно вводят очень плотную среду, например 60--70%-ный раствор сахарозы. Находящийся сверху раствор вытесняется, и фракции отбирают при помощи шприца, пипетки или специального приспособления, соединенного через трубочку с коллектором фракций. Если пробирки изготовлены из целлулоида или нитроцеллюлозы, фракции извлекают, надрезав пробирку специальным лезвием. Для этого центрифужную пробирку, закрепленную в штативе, надрезают непосредственно под нужной зоной и отсасывают фракцию шприцом или пипеткой. При подходящей конструкции режущего устройства потеря раствора будет минимальной. Сбор фракций осуществляют также, проколов основание пробирки тонкой полой иглой. Капли, вытекающие из пробирки через иглу, собирают в коллектор фракций для дальнейшего анализа.

2.5.5 Препаративные центрифуги и их применение

Препаративные центрифуги можно подразделить на три основные группы: центрифуги общего назначения, скоростные центрифуги и препаративные ультрацентрифуги. Центрифуги общего назначения дают максимальную скорость 6000 об * мин-1 и ОЦУ до 6000 g. Они отличаются друг от друга только емкостью и имеют ряд сменных роторов: угловых и с подвесными стаканами. Одной из особенностей этого вида центрифуг является их большая емкость -- от 4 до 6 дм3, что позволяет загружать их не только центрифужными пробирками на 10,50 и 100 см3, но и сосудами емкостью до 1,25 дм3. Во всех центрифугах этого типа роторы жестко крепятся на валу привода, и центрифужные пробирки вместе с их содержимым должны быть тщательно уравновешены и различаться по весу не более чем на 0,25 г. Нельзя загружать в ротор нечетное число пробирок, а при неполной загрузке ротора пробирки следует размещать симметрично, одна против другой, обеспечивая таким образом равномерное распределение пробирок относительно оси вращения ротора.

Скоростные центрифуги дают предельную скорость 25 000 об-мин-1 и ОЦУ до 89000g. Камера ротора снабжена системой охлаждения, предотвращающей нагревание, которое возникает вследствие трения при вращении ротора. Как правило, скоростные центрифуги имеют емкость 1,5 дм3 и снабжены сменными роторами, как угловыми, так и с подвесными стаканами.

Препаративные ультрацентрифуги дают предельную скорость до 75000 об-мин-1 и максимальное центробежное ускорение 510 000 g. Они снабжены как холодильником, так и вакуумной установкой, чтобы предотвратить перегрев ротора вследствие трения его о воздух. Роторы таких центрифуг изготавливают из высокопрочных алюминиевых или титановых сплавов. В основном применяют роторы из алюминиевых сплавов, однако в тех случаях, когда необходимы особенно высокие скорости, пользуются роторами из титана. Для уменьшения вибрации, возникающей в результате нарушения равновесия ротора из-за неравномерного наполнения центрифужных пробирок, ультрацентрифуги имеют гибкий вал. Центрифужные пробирки и их содержимое должны быть тщательно уравновешены с точностью до 0,1 г. Аналогичные требования следует соблюдать и при загрузке роторов центрифуг общего назначения.

2.6 Конструкция роторов

2.6.1 Угловые роторы и роторы с подвесными стаканами

Роторы препаративных центрифуг обычно бывают двух типов -- угловые и с подвесными стаканами. Угловыми они называются потому, что помещаемые в них центрифужные пробирки все время находятся под определенным углом к оси вращения. В роторах с подвесными стаканами пробирки устанавливаются вертикально, а при вращении под действием возникающей центробежной силы переходят в горизонтальное положение; угол наклона к оси вращения составляет 90°.

В угловых роторах расстояние, проходимое частицами до соответствующей стенки пробирки, весьма невелико, и поэтому седиментация происходит сравнительно быстро. После столкновения со стенками пробирки частицы соскальзывают вниз и образуют на дне осадок. При центрифугировании возникают конвекционные потоки, которые в значительной степени затрудняют разделение частиц с близкими седиментационными свойствами. Тем не менее роторы подобной конструкции с успехом применяются для разделения частиц, скорости седиментации которых различаются довольно сильно.

В роторах с подвесными стаканами также наблюдаются конвекционные явления, однако выражены они не так сильно. Конвекция является результатом того, что под действием центробежного ускорения частицы оседают в направлении, не строго перпендикулярном оси вращения, и поэтому, как и в угловых роторах, ударяются о стенки пробирки и соскальзывают на дно.

Конвекционных явлений и эффектов завихрения удается до некоторой степени избежать, используя пробирки секториальной формы в роторах с подвесными стаканами и регулируя скорость вращения ротора; перечисленных выше, недостатков лишен также метод центрифугирования в градиенте плотности.

2.6.2 Роторы непрерывного действия

Роторы непрерывного действия предназначены для скоростного фракционирования относительно небольших количеств твердого материала из суспензий больших объемов, например для выделения клеток из питательных сред. В ходе центрифугирования суспензия частиц добавляется в ротор непрерывно; пропускная способность ротора зависит от природы осаждаемого препарата и варьируете пределах от 100 см3 до 1 дм3 в 1 мин. Особенность ротора состоит в том, что он представляет собой изолированную камеру специальной конструкции; содержимое ее не сообщается с внешней средой, а поэтому не загрязняется и не распыляется.

2.6.3 Зональные роторы, или роторы Андерсона

Зональные роторы делают из алюминиевых или титановых сплавов, которые способны выдерживать весьма значительные центробежные ускорения. Обычно в них имеется цилиндрическая полость, закрывающаяся съемной крышкой. Внутри полости, на оси вращения расположена осевая трубка, на которую надевается насадка с лопастями, разделяющими полость ротора на четыре сектора. Лопасти или перегородки имеют радиальные каналы, по которым из осевой трубки к периферии ротора нагнетается градиент. Благодаря такой конструкции лопастей конвекция сведена до минимума.

Заполнение ротора производится при его вращении со скоростью около 3000 об/мин-1. В ротор нагнетают заранее созданный градиент, начиная со слоя наименьшей плотности, который равномерно распределяется по периферии ротора и удерживается у внешней его стенки перпендикулярно оси вращения благодаря центробежной силе. При последующем добавлении слоев градиента большей плотности происходит непрерывное смещение к центру менее плотных слоев. После того как в ротор будет нагнетен весь градиент, его заполняют до полного объема раствором, называемым «подушкой», плотность которого совпадает или несколько превышает наибольшую плотность преформированного градиента.

Затем через осевую трубку, наслаивают исследуемый образец, который вытесняют из трубки в объем ротора с помощью раствора меньшей плотности, при этом с периферии удаляется такой же объем «подушки». После всех этих процедур скорость вращения ротора доводят до рабочей и в течение необходимого промежутка времени проводят либо зонально-скоростное, либо зонально-изопикническое фракционирование. Извлечение фракций проводят при скорости вращения ротора 3000 об - мин-1. Содержимое ротора вытесняют путем добавления с периферии «подушки», в первую очередь вытесняются менее плотные слои. Благодаря особой конструкции осевого канала ротора Андерсона смешивания зон при их вытеснении не происходит. Выходящий градиент пропускают через регистрирующее устройство, например ячейку спектрофотометра, с помощью которого по поглощению при 280 нм можно определить содержание белка, или через специальный детектор радиоактивности, после чего собирают фракции.

Емкость зональных роторов, используемых при средних скоростях, варьирует от 650 до 1600 см3, что позволяет получать довольно большое количество материала. Зональные роторы применяются для удаления белковых примесей из различных препаратов и для выделения и очистки митохондрий, лизосом, полисом и белков.

2.6.4 Анализ субклеточных фракций

Свойства полученного при фракционировании препарата субклеточных частиц можно отнести к свойствам самих частиц только в том случае, если препарат не содержит примесей. Следовательно, всегда необходимо оценивать чистоту получаемых препаратов. Эффективность гомогенизации и наличие в препарате примесей можно определить с помощью микроскопического исследования. Однако отсутствие видимых примесей еще не является достоверным доказательством чистоты препарата. Для количественной оценки чистоты полученный препарат подвергают химическому анализу, который позволяет установить содержание в нем белков или ДНК, определить его ферментативную активность, если возможно, и иммунологические свойства.

Анализ распределения ферментов во фракционируемых тканях основан на двух общих принципах. Первый из них заключается в том, что все частицы данной субклеточной популяции содержат одинаковый набор ферментов. Второй предполагает, что каждый фермент локализован в каком-то определенном месте внутри клетки. Если бы это положение было верно, то ферменты могли бы выступать в роли маркеров для соответствующих органелл: например, цито-хромоксидаза и моноаминооксидаза служили бы ферментами-маркерами митохондрий, кислые гидролазы -- маркерами лизосом, каталаза -- маркером пероксисом, а глюкозо-6-фосфатаза -- маркером мембран микросом. Оказалось, однако, что некоторые ферменты, например малатдегидрогеназа, Р-глюкуронидаза, НАДФ' Н-цитохром-с-редуктаза, локализованы более чем в одной фракции. Поэтому к выбору ферментов-маркеров субклеточных фракций в каждом конкретном случае следует подходить с большой осторожностью. Более того, отсутствие фермента-маркера еще не означает отсутствия соответствующих органелл. Вполне вероятно, что при фракционировании происходит потеря фермента органеллами или он ингибируется или инактивируется; поэтому для каждой фракции обычно определяют не менее двух ферментов-маркеров.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.