Рефераты. Гуманистические и правовые проблемы естественнонаучного познания

p align="left">В настоящее время найдено множество прикладных проблем изучения теории хаоса. К примеру, в математической физике разрабатывается теория бифуркаций Файгенбаума, решается вопрос о квантовом хаосе и его соотнесении с квантовой механикой, в астрономии специалисты по хаосу пытаются найти объяснение моделям гравитационной неустойчивости, истолковывающей происхождение метеоритов. Так для описания современной геометрии пространства-времени, для создания новой геометрии природы часто используется понятие "фрактальная структура". Термин "фрактал" [< лат.fractus -состоящий из фрагментов, frangere - разбивать] означает "создавать неправильные фрагменты". Понятия "фрактал" и "фрактальная геометрия", появившиеся в конце 1970-х гг., с середины 1980-х прочно вошли в обиход математиков и программистов. Впервые их предложил использовать как рабочие термины Бенуа Мандельброт в 1975 г. для обозначения нерегулярных, самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 г книги Мандельброта "Фрактальная геометрия природы". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 гг. в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Фрактал - это грубая или фрагментированная геометрическая форма, которая может быть разделена на части, каждая из которых (по крайней мере, приблизительно), уменьшенная копия всего целого. В свете новых исследований можно дать несколько определений фрактала:

расходящийся критерий: любая форма, обладающая таким необычным свойством, что когда вы измеряете длину, область, поверхность области или объем в дискретных единицах измеряемое значение изменяется по экспоненте на размер дискретной единицы;

геометрическая фигура или естественный предмет, обладающий следующими характеристиками:

а) часть имеет ту же структуру или форму, как и целое, за исключением того, что они при различном масштабе могут немного искажаться;

б) форма сильно неправильна и фрагментирована, и остается такой независимо от масштаба.

Существует много математических структур, которые являются фракталами. Например: снежинка Коха, кривая Пеано, множество Мандельброта, аттрактор Лоренца и другие. Фракталы с большой точностью описывают многие физические явления и образования реального мира: облака, горы, турбулентные течения, береговые линии, корни, ветки деревьев, легкие животных и человека, что далеко не соответствует простым геометрическим фигурам.

В настоящее время идет процесс объединения разнообразных работ по изучению фракталов в единую систему и осознания фундаментальной эвристической значимости понятия фрактальности мироздания. Детерминизм фрактального описания подразумевает поиск и интерпретацию масштабных инвариантов, характеризующих нерегулярность, изрезанность формы на различных масштабах. Природа демонстрирует нам не просто высокую степень, а совершенно другой уровень сложности. Число различных масштабов длин в природных структурах практически бесконечно". Существование этих структур призывает изучать те формы, которые Евклид отбросил как "бесформенные", исследовать морфологию "аморфного". Таким образом, естественнонаучное описание наглядных моделей природы переходит к ее реальному отражению с учетом многовариантности и сложности природных процессов. Фрактальный процесс рассматривается как цепь самоподдерживающихся изменений, самоорганизующихся вокруг самодостраиваемого внутреннего образца. Иначе говоря, природа и человек в ней могут быть представлены не как конгломерат изолированных объектов и, тем более, не как механическая система, а как целостный живой организм, способный к фрактальному "блужданию" в определенных, очень узких границах.

Биологи адаптируют теории хаоса и фракталов для изучения иммунной системы человека с ее миллиардами компонентов и человеческого мозга, обладающего способностью к познанию и отражению объектов внешнего мира и даже самопознанию. Пересматриваются даже теоретические основы экологии и равновесного существования экологических систем. Традиционно полагалось, что в живой природе существуют стационарные состояния равновесия, вокруг которых колеблются показатели численности популяций растений, животных, микроорганизмов, данное состояние динамического равновесия обеспечивает наилучшее использование пищевых ресурсов и обусловливает минимальные энергетические потери. Согласно современным предположениям, природа выступает как сложнейшая нелинейная система, движимая "странными" аттракторами с исчисляемыми фрактальными (нецелочисленными) размерностями. Американскому эпидемиологу У. Шафферу удалось просчитать динамику подчиненности многих заболеваний с помощью методики реконструкции фазового перехода. Оказалось, что эпидемическое распространение тяжелых заболеваний, таких как корь, ветряная оспа, грипп, можно предсказывать с большой долей вероятности.

Многочисленные исследования ученых в области хаоса заставляют по-новому оценивать тезис И. Пригожина "Порядок из хаоса", многие склонны переформулировать его и говорить о "порядке внутри хаоса". В синергетических взаимодействиях главенствующая роль принадлежит бифуркациям - мельчайшим подпороговым возмущениям, накопление которых ведет к изменению в системе в целом. Причем в аспекте кооперативных взаимодействий рассматриваются как физико-химические, биологические, так и социальные системы.

По нашему мнению, преувеличение роли синергетики и механическое перенесение ее на почву социобиологических взаимодействий неправомочно и поспешно. Нельзя отрицать, что синергетическое видение мира есть достижение науки XX столетия, оно значительно расширило возможности постижения бытия. Сейчас становится понятным, что в сложных системах не только бифуркации несут в себе созидающую роль, но и важно соответствие любой системы внешней, тоже динамически изменяющейся среде.

М. И. Штеренберг приходит к выводу, что роль бифуркаций проявляется уже на стадии отклонения системы от состояния равновесия (на уровне первоначальных флуктуации). Но в процессе биологической эволюции роль бифуркаций, в качестве которых выступают мутации генома, может быть либо нейтральной, либо, в большинстве случаев, отрицательной, и лишь 1 % всех генных мутаций организма оказывается полезным для него. Следовательно, для того чтобы существовать достаточно долго и устойчиво, организму приходится бороться (гасить) мутации генома.

Видный представитель французского Просвещения Поль Анри Гольбах полагал, что "наука - враг случайностей". Такова в общем смысле научная парадигма классицизма, к XX столетию она кардинально изменилась, выдвинув именно случайность на передовые исследовательские позиции, что было зафиксировано в принципе "индетерминизма". На рубеже 1980-90-х гг. в современной физике удалось преодолеть давнее противостояние детерминизма и индетерминизма, вписав случайность в рамки закономерности. Философски этот вывод может быть осмыслен, как возвращение от механистического "принципа детерминизма" и неклассического "индетерминизма" к исконному диалектическому принципу всеобщей связи предметов и явлений.

Современные исследования становящихся систем позволяют пересмотреть классический принцип причинности, когда следствие (явление, событие в мире живой природы) однозначно вытекает из причины. В новых концепциях построения микро- и мегамира следствие способно выступать в роли аттрактора (целевого фактора) и даже предопределять с помощью опережающего воздействия причину. К примеру, информационная причинность, определяющая поведение систем в соответствии с поступающей информацией. Для этого объекту необходимо сначала "запомнить" свое первоначальное состояние, а затем, пройдя через серию стадий видоизменения, возвратиться к нему.

В постнеклассическую науку активно входят не только случайность и необходимость, но и регулятор их отношений - целесообразность. Некоторые философы склонны полагать (академик В.Г. Торосян, Н.И. Степанов), что в случае живых и социальных систем, речь скорее должна идти не о целенаправленности, а о целеподобности (теленомичности). Так как, по сути, не цель определяет действия биосоциальных систем, а они сами способны генерировать и изменять ее в ходе решения поставленной задачи. Иначе говоря, процесс становления живых систем задается целенаправленностью не жестко детерминировано, формально, а биосистемам присущ творческий поиск и выбор цели. К слову сказать, современная физика и космология оперируют странными на первый взгляд понятиями, такими как "волны вероятности", "свобода воли электрона", "степень свободы" динамики Вселенной. А ступени рождения и развития сложной системы видятся как переход от состояний хаоса, через порядок к возможному хаосу, имеющему стремление к новому порядку.

Исследования становящихся структур, включая и виртуальные миры, порождают целый ряд новых онтологических трудностей, структура бытия уже мыслится не как стабильная, стационарная, а как серия "фазовых" переходов от одних состояний к другим, где порядок возникает не вместо хаоса, и не замещает его, а органически включается в него, внося творческий, упорядочивающий характер. По сути, в реальности не существует идеально хаотических, либо идеально упорядоченных структур, они есть лишь научные абстракции.

3. Правовые проблемы современного научного познания живого

Активность живых систем высоко упорядочена и когерентна (синхронизирована), корреспондируется с их желаниями и интересами.

Эта сложность черт живых систем была отмечена философами и естествоиспытателями давно, но ее научный анализ не имел достаточно успешных результатов. Главные "тайны" жизни объяснялись по-разному от специфического сцепления атомов у Демокрита и "энтелехии" у Аристотеля, до присутствия особой "vis vitalis" (жизненной силы, археи, психеи) у виталистов. Достижения молекулярной биологии и генетики последних лет в познании функционирования живого трактуются преимущественно в двух аспектах: информационном и энергетическом, имеются попытки объединения этих подходов в современной биоинформационной концепции строения генома (один из ее родоначальников советский биолог А. Любищев). Направленный характер деятельности сложных живых систем, который можно определить как поведение системы, связывается с целеполаганием, со свободой воли, моментом осознанного выбора альтернативных вариантов. Важное значение имеет механизм реализации многофункциональной, структурированной системы, причем на различных уровнях живого доминируют различные процессы. На высших, управляющих уровнях первостепенную значимость приобретают информационные потоки, а на низших, управляемых - силовые и энергетические. В результате чего высшие уровни, способные к принятию решения, производят его не "произвольно", а в зависимости от потребностей и низших уровней.

Таким образом, механизм взаимодействия между различными структурными уровнями живого не подчиняется лишь силовым воздействиям, он намного сложнее и может быть описан с помощью информационно-телеологической модели. В. А. Энгельгардт отмечает, что "ведущими началами в биологических иерархиях являются элементы координирования и кооперации, а не доминирования и подчиненности".

В связи с данными исследованиями очевидна ограниченность дефиниций термина "информация". Преимущественно его трактовки имеют место в теории информации К. Шеннона, причем физическим аналогом информации выступает энтропия, то есть мера хаоса, беспорядка в системе, следовательно, информация рассматривается как мера упорядоченности системы. Распространено не только физическое толкование информации, но и математическое. Но, увы, эти теории не продвинули нас вперед в вопросе понимания того, как именно запоминает и усваивает информацию живой организм. Необходимо учитывать, что важнейшим информационным аспектом в функционировании живых систем является наличие не только прямых, но и в главной мере обратных связей. Принято выделять:

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.