Рефераты. Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4

p align="left">3. Штамм DSM-9103 граммотрицательная бактерия относится к подклассу б-Proteobacteria [4], способный деградировать комплексы Mg2+-, Ca2+-, Mn2+-ЭДТА и частично хелаты с Co, Cu, Zn, Pb.;

4. Штамм LPM-410 идентифицирован как Pseudomonas sp. [13].

Характеристика штамма LPM-4

Штамм LPM-4 был выделен в лаборатории физиологии микроорганизмов ИБФМ РАН к.б.н. Чистяковой Т. И. из активного ила Пущинских очистных сооружений методом накопительной культуры [6]. Клетки неподвижны, колонии на твердой питательной среде с ЭДТА через неделю роста 0,1-0,3 см в диаметре, круглые, перламутровые с синеватым блеском. Аэроб, не обладающий запахом.

Клетки штамма имеют палочковидную форму (0,1-0,2Ч0,5-0,6 мкм). На среде с ЭДТА клетки могут быть одиночными или парными. Это типичная граммотрицательная бактерия (рис. 4), о чем говорит достаточно толстая клеточная стенка с волнистыми краями. Клетка содержит электронно-плотные включения (при потреблении ЭДТА), которые, как показали исследования на других штаммах, содержат Ca2+, Mg2+ и PO43- [4].

Штамм LPM-4 уникален по потребностям в питательных веществах. Установлено, что штамм способен расти только на средах, содержащих ЭДТА, и не растет на средах, содержащих глюкозу, этанол, органические кислоты в качестве единственного источника углерода и энергии и неорганические (сульфат аммония, нитрат калия) или органические (мочевина, пептон, гидролизат казеина, аминопептид, дрожжевой экстракт) источники азота [6].

Данный штамм обладает положительной реакцией на наличие оксидазы и каталазы. Температурный оптимум для роста штамма 32-34?С. Оптимум рН=7. На жидкой питательной среде с ЭДТА идет защелачивание среды в процессе роста клеток.

Клетки штамма способны разрушать различные комплексы ЭДТА с металлами. Суспензия отмытых клеток штамма разрушала ЭДТА и комплексы Ba2+-, Mg2+-, Ca2+-, Mn2+-ЭДТА с постоянной скоростью в диапозоне от 0,310 до 486 ммоль ЭДТА/(г·ч), удельная скорость разрушения Zn-ЭДТА достигала наибольшего значения (0,137 ммоль ЭДТА/(г·ч)) в течение первых 10 часов инкубации, а затем снижалась [6].

Установлено, что штамм LPM-4 способен совместно метаболизировать ЭДТА и глюкозу. Этот процесс можно назвать кометаболизмом.

1.3. Понятие о кометаболизме

Кометаболизм - это особый случай утилизации смешанных субстратов. Кометаболизм впервые наблюдал Фостер [14] в 1962 году у бактерий, утилизирующих углеводороды. Эти бактерии могут расти на метане, как на единственном источнике углерода, то есть они являются метанотрофами. Однако, они не могут утилизировать такие алканы, как этан или пропан, в качестве единственного источника углерода. Когда бактерии росли на смеси метана, этана и пропана, клетки использовали метан, а также этан и пропан, которые окислялись до продуктов, таких как ацетальдегид, уксусная кислота, пропионовая кислота и ацетон соответственно.

Фостер предложил термин соокисление для описания подобного типа трансформации субстратов. Позднее другие исследователи наблюдали подобное явление с другими типами микробной трансформации; они включают не только окисление, но также и гидролиз, дегалогенирование и так далее, то есть термин “кометаболизм” было предложено использовать в более широком смысле.

В 1982 году Дальтон и Стирлинг предложили следующее определение кометаболизма. Кометаболизм - трансформация неростового субстрата в присутствии ростового субстрата или иного метаболизируемого соединения. Под неростовыми субстратами понимают такие, которые не обеспечивают деление клеток. Ростовой субстрат выполняет несколько функций. Во-первых, поставляет энергию для бактериального роста и процессов поддержания метаболизма нерастущих клеток. Во-вторых, поставляет восстановительные эквиваленты, которые позволяют деградировать неростовые субстраты. В-третьих, ростовые субстраты индуцируют синтез катаболических ферментов, которые обнаруживают загрязняющие соединения (поллютанты) и катализируют их трансформацию. Метаболизм неростовых субстратов не поставляет никакой энергии или восстановительных эквивалентов для микроорганизмов.

Структура трансформируемого (соокисляемого) соединения часто не имеет никакой аналогии с ростовым субстратом. В этом случае связь между процессами окисления ростового и трансформируемого (неростового) субстратов реализуется на уровне интермедиатов катаболизма источника углерода. Под этим подразумевают, что при окислении ростового субстрата генерируется энергия, необходимая для функционирования ферментов, осуществляющих окисление неростовых субстратов [14].

На основе разных механизмов трансформации неростового субстрата, а также в зависимости от того, является косубстрат ростовым или неростовым, условно можно выделить четыре типа кометаболизма.

Первый тип - трансформация неростового субстрата до продукта при использовании в качестве косубстрата ростового субстрата.

Второй тип - трансформация неростового субстрата без использования ростового субстрата. Неростовой субстрат используется не как источник углерода, а только как источник энергии, необходимой для осуществления реакций кометаболизма. В обоих рассмотренных случаях трансформация ростового субстрата должна обеспечивать энергией метаболизм другого субстрата, и этот процесс осуществляется только до определенного продукта, который дальше не ассимилируется клетками.

К третьему типу кометаболизма относятся процессы ассимиляции неростовых субстратов, что сопряжено с использованием ростовых субстратов, в результате чего соединения углерода включаются в компоненты клетки. Сначала подобные процессы были описаны как миксотрофия, однако поскольку один из субстратов не является ростовым, этот термин в данном случае является некорректным. Включение углерода неростовых субстратов или продуктов их трансформации в конструктивный метаболизм, который приводит к увеличению биомассы, предложено называть дополнительным метаболизмом [15]. Поскольку данные процессы осуществляются только при ассимиляции ростового субстрата, их можно отнести к кометаболизму. В этом случае продукты трансформации неростовых субстратов являются компонентами клеток.

Четвертый тип кометаболизма - синтаболизм - способность микроорганизмов расти на смеси двух или больше неростовых субстратов [16]. Синтаболизм был выявлен у облигатных метанотрофов. Показано, что в определенных условиях они способны расти при наличии двух субстратов одновременно, каждый из которых сам по себе не является ростовым. В основе синтаболизма лежит способность метанотрофных бактерий сооокислять (вследствие неспецифичности метанмонооксигеназы) С2Н6 или СО. Установлено, что для прохождения реакции монооксигенирования С2Н6 необходима энергия, источником которой может служить окисленные производные метана или этана (метанол, формиат, этанол). Соответствующие эксперименты показали, что метанотрофы способны расти на этане (неростовой субстрат) в присутствии названных выше дополнительных неростовых субстратов.

Конечные продукты трансформации могут использоваться другими микроорганизмами в сообществе. Конечные продукты кометаболизма сложно прогнозировать, но несколько типов эффектов можно представить: если косубстрат исходно токсичен, то в результате кометаболизма будет происходить его детоксикация. Конечные продукты кометаболизма будут поставлять питательные вещества для каких-нибудь других микроорганизмов и это может привести к большему биологическому разнообразию. Конечные продукты могут быть токсичными для данных продуцентов или других микроорганизмов и результатом этого может быть эффект ингибирования. Конечные продукты кометаболизма могут быть устойчивыми и это может быть результатом увеличения устойчивости конечных продуктов [14].

В целом, процессы кометаболизма изучены недостаточно. Дальнейшее исследование их механизмов имеет не только практическую ценность, но и большое теоретическое значение, поскольку может раскрыть закономерности взаимодействия микроорганизмов с несколькими субстратами [17].

Кометаболизм - важный инструмент при изучении процессов микробиологического разложения ароматических и циклических соединений. Многие виды Pseudomonas, Nocardia, Corynebacterium, Alcaligenes, Mycobacterium, Micrococcus, Cellulomonas, Streptococcus, Flavobacterium, а также микромицетов кометаболизируют ароматические циклические и полициклические углеводороды, высшие полициклические ароматические углеводороды, их алкилзамещенные и другие производные. У одних и тех же микроорганизмов могут функционировать различные механизмы расщепления ароматического кольца, что обусловлено как строением молекулы неростового субстрата, так и условиями культивирования.

Так, Nocardia sp. DSM 43251 осуществляет кометаболизм фенола, изомеров крезола и оксианизола, 3,4-диметилфенола, галогенфенолов, 4-(метилтио)-фенола в присутствии косубстратов - сахарозы, этанола, фумарата. Фенол и монохлорзамещенные производные метаболизируются через путь 1,2-расщепления катехола (катехол-1,2-диоксигеназа); замещенные производные фенола в пара-положении (метокси- или метилтиогруппа) - через путь 2,3- расщепления.

Некоторые нокардии соокисляют n-ксилол и образуют или n-толуиловую кислоту и дигидрокси-п-толуиловую кислоты, или б, б'-диметилмуконовую кислоту в зависимости от рН среды. п-Ксилол трансформируется видами Nocardia двумя путями. Регуляция осуществляется за счет изменения специфичности оксигеназы при изменении рН. При рН 8 функционирует метильная группа оксигеназной системы и образуется п-толуиловая кислота и дигидрокси-п-толуиловая кислоты. При рН 6 метильная группа оксигеназы не функционирует, что приводит к образованию метилзамещенных муконовых кислот путем прямого дигидроксилирования и разрыва бензольного кольца. Иногда п-ксилол окисляется до п-оксиметилбензойной кислоты. Соокисление метил- и этилзамещенных нафталинов клетками Nocardia и Streptomyces, выращенными на гексадекане, приводит к окислению только одного метильного или этильного заместителя до соответствующей карбоновой кислоты. При этом имеет значение стерическое положение метильной группы.

Изучено соокисление циклоалканов. Культура граммотрицательных бактерий при росте на 2-метилбутане соокисляла циклоалканы и циклические моноалкены. Только при соокислении циклопропана происходил разрыв кольца. Соокисление С5-С8- циклопарафинов приводило к накоплению соответствующих эпоксидов, спиртов и кетонов.

Приведенные примеры кометаболизма циклических соединений свидетельствуют о том, что типы реакций превращения этих неростовых субстратов достаточно хорошо изучены. Чаще всего способность кометаболизировать неростовые субстраты объясняется неспецифичностью некоторых ферментов. Если структурно неростовой субстрат подобен ростовому, то чаще всего реакции окисления двух субстратов катализируются одними и теми же ферментами, однако процессы трансформации ростового и неростового субстратов не всегда аналогичны. Например, клетки Arthrobacter продуцируют 2-, 3- и 4-гексадеканон из н- гексадекана при росте на дрожжевом экстракте, при этом обнаружены и соответствующие 2-, 3- и 4-спирты. Глюкоза стимулирует процесс кометаболизма гексадекана. Образование этих продуктов окисления, которые далее не трансформируются, свидетельствует о том, что начальные реакции окисления гексадекана являются результатом неспецифичности ферментов, функции которых не заключаются в окислении углеводородов [17].

Классический пример кометаболизма: окисление этана метаноокисляющими бактериями: образующийся при начальной довольно неспецифической монооксигеназной реакции этанол не метаболизируется далее метилотрофами и может только служить субстратом для других бактерий в данном местообитании. В результате активность окисления этана метаноокисляющей популяцией не увеличивается, пока присутствует метан как дополнительный субстрат [18].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.