32. Структурная химия. Теория Бутлерова.
В основе структурной химии лежит химическая атомистика Дж. Дальтона, согласно которой любой химический индивид стоит из совокупности молекул, обладающих строго определенным качественным и количественным составом. Более конкретные представления о структуре молекул содержатся в теории Берцелиуса, который пытался ответить на вопрос: существует ли какая-либо упорядоченность в объединении атомов в молекуле или они объединяются произвольно. И. Берцелиус выдвинул гипотезу, согласно которой все атомы химических элементов обладают различной электроотрицательностью в зависимости места, которое они занимают в ряду элементов с убывающей электроотрицательностью. Атом каждого элемента несет два заряда: положительный и отрицательный, но в зависимости от места в ряду один из зарядов больше. Объединение атомов в молекулу приводит к частичной нейтрализации зарядов.
Полная нейтрализация невозможна из-за неравенства зарядов. Поэтому молекулы каждого соединения обладают также избыточным зарядом и склонны к образованию более сложных молекул в виде комплексов.
Таким образом, по Берцелиусу, молекула представляет собой объединение двух разноименно заряженных атомов или атомных групп-радикалов. В этом заключается содержание понятия ”структура" по Берцелиусу.
Французский химик Ш. Жерар (1816-1856) показал, чтоструктурные представления Берцелиуса соответствуют действительности только в ряде случаев. Молекула является единой неделимой и унитарной системой, в которой все атомы всех элементов взаимодействуют -- взаимно преобразуются, в этом сущность "структуры" по Жерару.
Комбинируя атомы разных химических элементов, можно создать структурные формулы любого химического соедине-ния.
Таким образом можно создавать схему синтеза любого хими-ческого соединения, в том числе и неизвестного. Однако в неко-торых случаях, хотя формульная схема составлена правильно, химическая реакция может не осуществиться. Поэтому нужно учитывать не только методику составления формул, но и хими-ческую активность реагентов, которая лежит в основе теории химического строения Бутлерова.
Крупным шагом в развитии представлений о строении моле-кул явилась теория химического строения, выдвинутая в 1861 г. выдающимся русским химиком А. М. Бутлеровым.
Основу теории, разработан-ной А. М. Бутлеровым, составляют следующие положения:
1. Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.
2. Соединение атомов происходит в соответствии с их валент-ностью.
3. Свойства веществ зависят не только от их состава, но и от их "химического строения", т. е. от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой. Теория химического строения Бутлерова сочетается с широкими теоретическими обобщениями и научным предвидением. Бутлеров был убежден в возможности выразить формулами строения молекул химических соединений и притом сделать это путем изучения их химических превращений.
В 30-е годы нашего века теория Бутлерова нашла физическое квантово-механическое обоснова-ние. Согласно современным представлениям структура молекул -- это пространственная и энергетическая упорядоченность квантово-механической системы, состоящей из атомных ядер и электронов.
Структурная химия охватывает и неорганические материалы. В структурной неорганической химии можно выделить два перспективных направления:
· синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;
· создание кристаллов с заранее запрограммированными дефектами для производства материалов с заданными электрическими, магнитными, оптическими и другими свойствами.
Исследования последнего времени направлены на разработку эффективных технологий синтеза не только органических, но и неорганических материалов.
Изомеры - это соединения, которые состоят из одних и тех же веществ, но с разными свойствами.
Изотопы - атомы одного и того же химического элемента, имеющие одинаковое строение и разный вес.
35. Системный подход. Свойства и структура систем.
Системный подход - путь анализа сложных проблем, в которых проблема рассматривается как система с большим числом внутренних связей, связанная с другими сопутствующими проблемами внешних связей. Такой подход позволяет не только быстро предложить ряд решений, но и выбрать из них оптимальное (например, решение экологических проблем). Системный анализ - это совокупность методов и процедур, направленных на решение сложных комплексных проблем.
Система - это совокупность объектов, объединенных внутренними связями и образующих качественно новое целое и взаимодействующее с внешней средой посредством внешних связей. Система состоит из объектов, названных элементами. Элемент - это наименьшая единица системы. Элементы объединяются в подсистемы. Подсистема - это часть системы, которая обладает определенной автономностью, но в то же время подчиняется системе и управляется ею. Примером системы может служить человек. Связи в системе. 1 тип - связи по горизонтали - связи координации между однопорядковыми элементами. Они носят коррелирующий характер (когда ни одна часть системы не может измениться без других частей, т.е. корреляция - это взаимозависимость). 2 тип - связи по вертикали (связи субординации, иерархичные связи). Иерархичность - это включение систем нижних уровней в системы более высоких уровней. Системные свойства. Эмерджентность (дословно "возникающие") - это проявление у системы новых свойств, которых нет у составляющих систему элементов и подсистем. Стационарность (стабильность) - неизменность параметров системы во времени под действием внешних факторов. Устойчивость системы - это способность системы возвращаться в исходное состояние после выхода из этого состояния под действием внешних факторов. Пластичность - это способность системы возвращаться в исходное состояние после прекращения действия внешнего фактора. Необходимое разнообразие элементов означает, что система не может состоять из одинаковых элементов. Инерционность - это способность системы пассивно сопротивляться внешним воздействиям, т.е., система не может мгновенно измениться под действием внешних факторов. Классификация систем. Системы бывают открытые, закрытые и изолированные. Открытой является система, которая имеет активные двусторонние связи с внешней средой. Закрытой называется система, если связи являются односторонними, направленными внутрь системы и система не дает отклика на внешние воздействия. Изолированными являются системы при полном отсутствии связей с внешней средой. Типы систем. Системы бывают материальные (из материальных объектов, объективные, т.е. не зависят от ученых) и идеальные (они создаются для изучения материальных систем). Иначе идеальные системы называются концептуальными (научно-теоретическими). Системы бывают определенные и вероятностные. Определенные системы (или детерминистские). Поведение таких систем можно точно и однозначно предсказать. Поведение в вероятностной системе носит вероятностный характер.
38. Термодинамика. Первый, второй, третий законы термодинамики.
Термодинамика - это наука о тепловых явлениях, которая исследует физические процессы, происходящие при преобразовании тепловой энергии.
Первый закон термодинамики: энергия не возникает из ничего и не исчезает в никуда, она лишь может превращаться. Это одно из основных положений термодинамики, являющееся по существу законом сохранения энергии в применении к термодинамическим процессам. Было сформулировано в нач. 19 века.
Второй закон термодинамики: невозможен самопроизвольный переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде.
Третий закон термодинамики: нельзя охладить тело до абсолютного нуля (энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной).
Энтропия - это необратимость реакции (например, при сжигании угля в топке паровоза, выделяется дым, обратить дым в уголь невозможно). Энтропия - это функция, составляющая систему, которая характеризует степень беспорядка в системе.
40. Концепция самоорганизации. Синергетика.
Синергетика - это наука о самоорганизации сложных открытых систем. Самоорганизация - процесс формирования в системе все более сложных и сложных подсистем. Этот процесс естественен. Этот процесс вызван не специфическим воздействием извне. Другими словами, самоорганизация в общем понимании - это присущая материи способность к усложнению элементов и созданию все более упорядоченных структур в ходе своего развития; в узком понимании - это скачок, фазовый переход системы из менее в более упорядоченное состояние. В самоорганизации всегда возникает нечто новое, чего раньше не было. Самоорганизация - это междисциплинарная область знания, ведущий принцип всего современного естествознания, применение ко многим предметам, наукам.
В процессе усложнения систем различают два взаимодополняющих механизма: объединение частей и разделение (фракционирование) систем. Механизмы, основанные на этих двух принципах, обнаруживаются на всех уровнях сложности и упорядоченности, начиная с макромира и заканчивая крупномасштабными структурами Вселенной. На разных уровнях сложности системы в основе лежат силы, казалось бы, разной природы, но, в конечном счете все они сводятся к четырем фундаментальным взаимодействиям.
Другая сторона явления самоорганизации - информативность, способность системы любого уровня создавать, накапливать, хранить и использовать информацию, в том числе и о направлении своего развития.
Примеры самоорганизации: торнадо, химические часы, биологические процессы (эволюция), социальные системы (общество), формирование человеческой психики на протяжении жизни.
Необходимые условия самоорганизации:
Открытость системы (взаимодействие с другими системами, с окружающей средой): обмен энергией, обмен веществом, обмен информацией при деградации.
Формирование циклических процессов.
Принцип колыбели. Самоорганизация не происходит везде, а лишь в отдельных, особо сложных частях. Система должна быть погружена в другую систему, более большую ( как бы в колыбели). Нет равноправия. Характер самоорганизации - глобальность деградации и локальность самоорганизации.
Страницы: 1, 2, 3, 4