Система должна быть достаточно далека от состояния термодинамического равновесия. Иначе больше вероятность деградации, чем самоорганизации.
Уровни самоорганизации в природе:
Космологический - происхождение вещества из вакуума, появление барионной ассиметрии, разделение различных типов фундаментальных взаимодейтсвий, формирование протонов и нейтронов, формирование атомов водорода и гелия, первичный нуклеосинтез, разделение атомов вещеста и электромагнитного излучения.
Астрофизический - формирование галактик, звезд и планетных систем, звездный нуклеосинтез, образование в космосе простейших молекул вплоть до органических.
Геофизический - формирование и эволюция литосферы, гидросферы и атмосферы Земли как благоприятного резервуара для появления сложных органических молекул.
Химический и биохимический - химическая и биохимическая эволюция молекул и молекулярных агрегатов.
Биологический - биологическая эволюция от появления первых клеток до высших животных и человека, формирование и развитие общего в биосфере.
Социальный - социальная эволюция как историческое развитие различных форм человеческих сообществ от первобытных племен до современной всемирной цивилизации.
Психический и интеллектуальный - психическая и интеллектуальная эволюция от появления языка и письменности, мифологии ирелигии до современного состояния единой мировой науки; попытки формирования ноосферы.
Система обязательно когда-нибудь находится в состоянии кризиса, когда любая маленькая деталь может привести к непредсказуемым последствиям, гибели системы. Теория катастроф с математической точки зрения. Катастрофа - это когда при малом взаимодействии система уходит от прежнего динамического состояния и переходит в новое состояние. Система должна пережить катастрофу, чтобы самоорганизоваться.
Бифуркация - разветвление траектории движения тела или дальнейшего пути развития системы в некоторый момент времени. Если предсказание самоорганизации и возможно, то лишь ограниченно, локально, т.к. состояние катастрофы непредсказуемо - бифуркация : либо система "выздоравливает", либо "умирает".
37. Развитие представлений о природе теплоты. Вещественная и кинетическая теории теплоты.
Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдае-мые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Та-кие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. От температуры окружающей среды зави-сит возможность жизни на Земле. Люди добились относитель-ной независимости от окружающей среды после того как научи-лись добывать и поддерживать огонь. Многие философы древности рассматривали огонь и связан-ную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предприни-мались попытки связать теплоту с движением, так как было за-мечено, что при соударении тел или трении друг о друга они нагреваются.
Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.
Вновь был поставлен вопрос о том, что же такое теплота. На-метились две противоположные точки зрения. Согласно одной из них -- вещественной теории тепла, теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать из од-ного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.
Согласно другой точке зрения, теплота -- это вид внутрен-него движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.
Таким образом, представление о тепловых явлениях и свойст-вах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова "корпускула" (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.
Большой вклад в развитие корпускулярной теории тепла сде-лал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помо-щью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о су-ществовании "наибольшей или последней степени холода", ко-гда движение частичек вещества прекращается. Благодаря рабо-там Ломоносова среди русских ученых было очень мало сторон-ников вещественной теории теплоты.
Но все же, несмотря на многие преимущества корпускуляр-ной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экс-периментально было доказано сохранение теплоты при теплооб-мене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости -- теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.
С помощью корпускулярной теории теплоты не удалось по-лучить столь важные для физики количественные связи между величинами. В частности, не удалось объяснить, почему теплота сохраняется при теплообмене. В те времена не была ясна связь между механической характеристикой движения частиц -- их кинетической энергией и температурой тела. Понятие энергии еще не было введено в физику. Поэтому, вероятно, на основе корпускулярной теории не могли быть достигнуты в XVIII в. те немалые успехи в развитии теории тепловых явлений, какие да-ла простая и наглядная теория теплорода.
К концу XVIII в. вещественная теория теплоты начала сталкиваться со все большими трудностями и к середине XIX в. потерпела полное и окончательное поражение. Большим числом разнообразных опытов было показано, что "тепловой жидкости" не существует. При трении можно получить любое количество теплоты: тем больше, чем более длительное время совершается операция трения. С другой стороны, при совер-шении работы паровыми машинами пар охлаждается и теплота исчезает.
В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество те-плоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энер-гии. Было установлено, что теплота представляет собой форму энергии.
18. Развитие представлений о природе света
Основные законы логики известны еще с древних веков. Так, Платон (430 г. до н.э.) установил законы прямолинейного распространения и отражения света, Аристотель (350 г. до н.э.) и его ученики изучали преломление света.
Первые представления о природе света возникли у древних греков и римлян. В дальнейшем, по .мере изобретения и усовершенствования различных оптических инструментов, эти представления развивались и трансформировались. Скорость света была определена только в 1676 г. Оларфом Ремером из наблюдений затмений спутников Юпитера (с=3*108 см/с). В конце XVII в. на основе многовекового опыта и развития представлений о свете возникли две теории света: корпускулярная (И. Ньютон) и континуальная, т.е. волновая (Р.Гук и Х-Гюйгенс).
Согласно корпускулярной теории (теории истечения), свет представляет собой поток частиц (корпускул), испускаемых светящимися телами и летящих по прямолинейным траекториям.
Движение световых корпускул Ньютон подчинил сформулированным им законам механики. Так, отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где также соблюдались законы равенства углов падения и отражения. Преломление света Ньютон объяснял притяжением корпускул преломляющей средой, в результате чего скорость корпускул меняется при переходе из одной среды в другую. Из теории Ньютона следовало, что скорость распространения света в среде должна быть всегда больше скорости его распространения в вакууме.
Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде - эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами - упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.
Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн. Результирующая волна, распространяющаяся дальше, возникает вследствие наложения и интерференции всех волн от этих вторичных элементарных источников.
Волновая теория приводит к выводу, отличному от вывода теории Ньютона. По теории Гюйгенса скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме. Наука о свете накапливала экспериментальные данные, свидетельствующие о взаимосвязи световых, электрических и магнитных явлений. Максвелл в 70-х годах прошлого столетия выдвинул электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны.
В конце XIX в. Лоренцем была предложена электронная теория света, согласно которой диэлектрическая проницаемость зависит от длины волны падающего света. Теория Лоренца ввела представление об электронах, колеблющихся внутри атома, и позволила объяснить явления испускания и поглощения света веществом.
Обе теории основывались на гипотезе об эфире, только “упругий эфир” был заменен “эфиром электромагнитным” (теория Максвелла), или “неподвижным эфиром” (теория Лоренца), и поэтому их применение встретило ряд затруднений.
В 1900 г. немецкий физик М.Планк выдвинул гипотезу, согласно которой изучение электромагнитного поля происходит не непрерывно, а дискретно, т.е. определенными порциями (квантами), энергия которых определяется частотой.
В 1905 г. А. Эйнштейн, исследуя проблемы фотоэффекта, распространил идею квантирования также и на поглощение веществом энергии излучения светового потока. Напомним, что внешний фотоэффект состоит в вырывании электронов с поверхности металла под действием света. Согласно Эйнштейну, при облучении вещества световым потоком электроны вещества поглощают энергию света порциями. Позднее им было введено понятие "световых квантов" - фотонов.
Фотон, являясь квантом электромагнитного поля, существует только в движении со скоростью света. У фотона нет массы покоя.
Квантовое представление о свете хорошо согласуется с законами излучения и поглощения света, законами взаимодействия света с веществом. Дальнейший путь развития теории привел к современным представлениям о двойственной корпускулярно - волновой природе света.
8. Донаучное бытовое и мифологическое познание.
На начальных стадиях познания (мифология, натурфилософия) оба этих вида наук и культур не разделялись. Однако постепенно каждая из них разрабатывала свои принципы и подходы. Разделению этих культур способствовали и разные цели: естественные науки стремились изучить природу и покорить ее; гуманитарные своей целью ставили изучение человека и его мира. Считается, что методы естественных и гуманитарных наук также преимущественно различны: рациональный в естественных и эмоциональный (интуитивный, образный) в гуманитарных. Справедливости ради надо заметить, что резкой границы здесь нет, поскольку элементы интуиции, образного мышления являются неотъемлемыми элементами естественнонаучного постижения мира, а в гуманитарных науках, особенно в таких как история, экономика, социология, нельзя обойтись без рационального, логического метода. В античную эпоху преобладало единое, нерасчлененное знание о мире (натурфилософия). Не существовало проблемы разделения естественных и гуманитарных наук и в эпоху средневековья (хотя в то время уже начался процесс дифференциации научного знания, выделение самостоятельных наук). Тем не менее, для средневекового человека Природа представляла собой мир вещей, за которыми надо стремиться видеть символы Бога, т.е. познание мира было прежде всего познанием божественной мудрости. Познание было направлено не столько на выявление объективных свойств явлений окружающего мира, сколько на осмысление их символических значений, т.е. их отношения к божеству [2].
Страницы: 1, 2, 3, 4