Рефераты. Принципы биохимического исследования

Принципы биохимического исследования

Реферат

Принципы биохимического исследования

Введение

Основная задача биохимии -- объяснить, как функционируют живые системы с точки зрения процессов, протекающих в клетках. Все клетки в организме находятся в состоянии динамической активности и подвергаются действию внутренних и внешних факторов, которые в свою очередь также постоянно изменяются. В процессе жизнедеятельности любая отдельно взятая клетка взаимодействует с другими клетками, находящимися как в непосредственной близости от нее (межклеточные взаимодействия), так и на некотором расстоянии (гормональные эффекты). Функционирование органеллы внутри клетки также в значительной степени зависит от активности других органелл и окружающей цитоплазмы. Ясно поэтому, что нельзя достаточно полно изучить живую клетку, если делать это в отрыве от целого организма.

Интенсивные исследования, расширяющие и углубляющие наши знания о многочисленных процессах, протекающих в живом организме, ведутся в области фармакологии, микробиологии, патологии и других наук. Биохимия изучает эти процессы главным образом на уровне клетки и клеточных структур, однако полученные результаты должны рассматриваться также на уровне органов, тканей, всего организма и даже во взаимосвязи организма с окружающей средой.

Изучение любой последовательности взаимосвязанных процессов, протекающих в какой-либо биологической системе, начинают, как правило, с изучения ее компонентов. Для этого компоненты обычно выделяют, всесторонне их исследуют и пытаются понять, как они функционируют в составе организма.

Процессы, характерные для целой клетки, протекают в отдельных клеточных частицах и органеллах, которые для анализа выделяют из клетки с помощью фракционирования. Этот процесс обычно состоит из двух этапов (разд. 1.10.3): сначала клетки разрушают, а затем из образовавшейся суспензии методом центрифугирования (гл. 2) выделяют нужные частицы и органеллы. Дальнейшее разделение индивидуальных компонентов клеточных частиц и органелл и изучение их свойств проводят с помощью центрифугирования (гл. 2), хроматографии (гл. 3) или электрофореза (гл. 4). Для определения состава, механизма действия и функций клеточных компонентов пользуются сложными количественными и качественными аналитическими методами. На атомном и молекулярном уровнях применяют целый ряд спектральных методов (гл. 5); механизм действия клеточных частиц и внутриклеточные взаимодействия изучают, используя одновременно несколько аналитических методов, таких, как спектроскопия (гл. 5) и радиоизотопные методы (гл. 6), потенциометрия, полярография (гл. 7) и манометрия (гл. 8).

При фракционировании нормальная активность клетки может в значительной степени нарушаться. Чтобы свести последствия фракционирования до минимума и приблизить условия к естественным, применяют особые приемы (разд. 1.10.1). Однако все побочные явления, возникающие в ходе фракционирования, устранить невозможно, поэтому полученные результаты следует трактовать весьма осторожно, особенно если речь идет о целой клетке, органе или организме.

1. рН среды и буферные растворы

1.1 Влияние рН на биологические процессы

Организмы и клетки, как правило, весьма устойчивы даже к значительным изменениям рН окружающей среды. Внутриклеточные процессы, наоборот, обладают высокой чувствительностью к рН и протекают в среде, рН которой строго регулируется (правда, некоторые колебания рН могут наблюдаться и внутри клетки, например у поверхности мембраны). Большинство внутриклеточных процессов протекает при нейтральных значениях рН, когда их скорость максимальна. Гидролазы лизосом, однако, обладают максимальной активностью при рН 5,0. Желудочный сок млекопитающих имеет весьма необычную величину рН -- около 1; именно при этом рН активность фермента пепсина, начинающего переваривание белков пищи в желудке, максимальна.

В биологических системах постоянная величина рН поддерживается с помощью эффективных буферных систем, которые по своей химической природе таковы, что они препятствуют изменениям рН, возникающим в ходе метаболического образования кислот (например, молочной кислоты) и оснований (например, аммиака). Большинство буферных систем, содержащихся в клеточных жидкостях, включают фосфаты, бикарбонат, аминокислоты и белки.

Чувствительность биологических процессов к рН обусловлена целым рядом причин. Ионы водорода могут выступать в качестве катализатора ряда процессов, быть реагентом или продуктом реакции. Кроме того, при изменении рН может измениться проницаемость клеточной мембраны, а следовательно, и распределение веществ или ионов по обе ее стороны. Подобно другим биологическим структурам, мембраны содержат способные к ионизации группы, и в зависимости от степени их ионизации меняется конформация, а значит и биологическая активность молекул, в которые эти группы входят. Это прежде всего касается белков, а следовательно, ферментов. В некоторых белках небольшое изменение рН окружающей среды вызывает проявление биологической активности. На примере гемоглобина, основной функцией которого является перенос кислорода от легких к тканям, можно видеть, что при активном тканевом дыхании незначительное понижение рН в тканях в результате образования углекислоты и ионов водорода облегчает высвобождение кислорода. Процесс высвобождения кислорода сопровождается связыванием протонов гемоглобином, что увеличивает буферную емкость системы.

При изучении метаболических процессов in vitro возникает необходимость в применении «нефизиологических» буферных растворов: направленное изменение рН может значительно облегчить изучение таких типов молекул, как аминокислоты, белки и нуклеиновые кислоты с помощью электрофореза и ионообменной хроматографии.

1.2 Буферные растворы для биологических исследований

Буферным называется такой раствор, который препятствует изменению концентрации ионов водорода при добавлении к нему кислоты или щелочи. Такое действие раствора называется буферным. Величину буферного действия характеризуют буферной емкостью р, равной количеству сильного основания, которое необходимо добавить для изменения рН раствора на одну единицу.

где d(pH) -- изменение рН раствора при добавлении основания.

Обычно пользуются буферными растворами, состоящими из смеси слабой кислоты или основания и соли этой кислоты, например смеси уксусной кислоты и ацетата натрия (по номенклатуре Брёнстеда и Лоури буферный раствор представляет собой смесь слабой кислоты и сопряженного с ней основания).

При добавлении к раствору слабой кислоты (НА) и ее соли (А~) ионов водорода последние нейтрализуются анионами соли, которые действуют в данном случае как слабое основание; гидроксильные ионы, наоборот, нейтрализуются кислотой. Отсюда следует, что буферная емкость раствора, составленного из данной кислоты и сопряженного с ней основания, максимальна в том случае, когда их концентрации равны, т. е. рН = рКа кислоты. Буферная емкость зависит также от общей концентрации раствора и отношения соль-- кислота: чем выше концентрация раствора, тем больше его буферная емкость. Концентрация кислоты и соли в буферных растворах обычно бывает порядка 0,05--0,20 М, а достаточной буферной емкостью растворы обладают в области значений

рН = рКа ± 1

Буферы, применяемые для биологических исследований, должны удовлетворять ряду требований:

1. Обладать достаточной буферной емкостью в требуемом диапазоне значений рН.

2. Обладать высокой степенью чистоты.

3. Хорошо растворяться в воде и не проникать через биологические мембраны.

4. Обладать устойчивостью к действию ферментов и гидролизу.

5. рН буферных растворов должен как можно меньше зависеть от их концентрации, температуры и ионного или солевого состава среды.

6. Не оказывать токсического или ингибирующего действия.

7. Комплексы буфера с катионами должны быть растворимыми.

8. Не поглощать свет в видимой или ультрафиолетовой областях спектра.

К сожалению, этим требованиям удовлетворяют далеко не все буферные растворы. Так, фосфаты обладают способностью осаждать поливалентные катионы и во многих системах выступают в качестве метаболитов или ингибиторов; трис-буфер иногда оказывает токсическое или ингибирующее действие. До недавнего времени насчитывалось всего несколько буферов, рН которых лежит в важной для биохимии области 6,0--8,0 и которые удовлетворяют перечисленным выше требованиям. В последние годы, однако, появился целый ряд так называемых цвиттерионных буферов типа ГЭПЭС и ПИГТЭС. Некоторые наиболее распространенные буферы приведены в табл. 1.1. Для получения буферных растворов, применимых в широком диапазоне значений рН, используются смеси разных буферов. Например, буферы Мак-Ильвейна имеют рН с областью значений от 2,2 до 8,0 и приготавливаются из лимонной кислоты и двузамещенного фосфорнокислого натрия.

Наиболее важной группой физиологических буферов являются белки. Благодаря большому количеству содержащихся в боковых цепях аминокислот щелочных и слабокислых групп белки имеют очень высокую буферную емкость. Буферная емкость крови в основном определяется гемоглобином.

1.3 Зависимость ионизации аминокислот и белков от рН

Аминокислоты и белки -- это наиболее важные в биологическом отношении соединения, поэтому необходимо знать, в какой степени изменение рН влияет на их физические свойства. За исключением пролина, химические формулы всех аминокислот, из которых синтезируются белки, можно записать в общем ' виде как RCH(NH2)COOH. рН аминогруппы лежит в области 9,0--10,5, а карбоксильной группы -- между 1,7 и 2,4.

Степень ионизации аминокислот в водных растворах зависит от рН и определяется уравнением Гендерсона--Хассельбальха.

Таким образом, при низких значениях рН аминокислота находится в катионной форме, а при высоких -- в анионной. При некотором промежуточном значении рН аминокислота оказывается незаряженной и называется цвиттерионом. Было установлено, что в кристаллическом состоянии или после растворения в чистой воде такие аминокислоты существуют главным образом в виде цвиттерионов, что придает им свойства ионных соединений, а именно высокую точку плавления и кипения, хорошую растворимость в воде и плохую растворимость в таких органических растворителях, как эфир и хлороформ. Величина рН, при которой в водном растворе преобладает цвиттерион, называется изоионной точкой: число отрицательных зарядов, образующихся на молекуле в результате отщепления протонов, равно числу положительных зарядов, образующихся благодаря присоединению протонов. Для аминокислот эта величина приблизительно соответствует изоэлектрической точке (pi) -- молекула не несет суммарного заряда и таким образом оказывается электрофоретически неподвижной. Численное значение рН для этого случая зависит от того, насколько сильной является кислота, и определяется следующим уравнением:

Для глицина величины рКа, Н рКаг равны 2, 3 и 9,6 соответственно; следовательно, изоионная точка равна 6,0. При более низких значениях рН в растворе содержатся и цвиттерион, и катион, а соотношение между ними определяется уравнением Гендерсона -- Хассельбальха; при более высоких рН наряду с цвиттерионом в растворе находится анион.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.