Глубже вдаваться в теорию катастроф я не буду, потому что основная цель этой работы -отделить понятия - «бедствие» и «катастрофа». И не просто описать и классифицировать их, а выяснить причину столь многочисленных исследований этой темы, и рассмотреть результаты проделанной работы.
Актуальность и область применения универсальных законов бедствий и катастроф
В последние годы вопрос о развитии научных институтов прогнозирования и мониторинга решается на государственном уровне. В высокоразвитых странах, таких как США, правительство выделяет огромные средства на исследования в этой области. Причина такого серьёзного отношения к подобным событиям очевидна. Это дает возможность прогнозировать катастрофические события в любой области, будь то экономика, политика, метеорология, а также защитить себя от этих явлений. Навряд ли возникнет вопрос: «о каких именно событиях идёт речь?» Но чтобы обозначить масштабы этой тематики, я приведу несколько примеров: крах на фондовой бирже, наводнение, землетрясение, террористические атаки, утечка информации, число заболевших в эпидемии (в т.ч. эпидемии компьютерных вирусов), образование гигантских месторождений минеральных запасов, аварии на нефтеперерабатывающих и нефтетехнических предприятиях и т.п. Среди очевидно негативных событий в этом списке есть и исключение. И хотя я привожу только один пример, это еще не говорит об исключительности события. В любом случае, научные исследования во всех этих областях безусловно являются крайне важными. Несмотря на многочисленные достижения в области исследования катастроф, их количество и ущерб, нанесённый ими в результате не сильно сократился за последние годы. Это происходит потому, что правительства таких стран, как Россия на деле не уделяет этому вопросу достаточного внимания. При хорошо организованной системе исследования катасрофических событий, рост страны во всех отраслях станет очевидным и стабильным.
На протяжении всей истории человечества наука развивается. Эволюционируя, она разрушает многие существенные для своего времени законы, создавая новые теории - ещё более фундаменттальные и приближенные к реальности. Классическая механика и термодинамика лишили человечество мечты изобрести вечный двигатель. Теория относительности уверила нас в том, что не удастся передавать информацию в вакууме со сверхсветовой скоростью. Нелинейная динамика (сложные системы) утверждает наперекор философии, что отнюдь не всё в этом мире предопределено. Более того, существует горизонт предсказаний, дальше которого мы, увы, заглянуть не можем.
Законы распределения вероятностей
Чтобы описать практически все природные явления, как правило, используются функции распределения. Функция распределения это такая функция, которая оперирует числовыми значениями вероятностей. Функции распределения делятся на гауссовые и негауссовые. Гауссовые безошибочно описывают процессы в неживых системах, например, технических. Вообще они имеют настолько широкую область применения, что также называются «нормальными распределениями».
Великий немецкий математик Карл Фридрих Гаусс многие свои фундаментальные открытия сделал в довольно раннем возрасте. Гауссовые распределения, как нетрудно догадаться, как раз одно из его открытий. Для иллюстрации этого закона можно построить гистограмму, показывающую распределение количества людей в Санкт-Петербурге по росту. На оси Х отложить рост, на оси У - количество людей с тем или иным ростом.
Затем проапроксимировав эту гистограмму (грубо говоря, сгладив углы), вы получите график плотности вероятности того, с каким ростом вы встретите человека чаще, а с каким реже. Это и будет закон нормального распределения.
[10]
Эта огибающая функция в наиболее точной мере может быть задана функцией . е - это экспонента, т.е. это конкретное число, а следовательно константа. Функция стремительно убывает, что говорит о том, что найти человека с ростом значительно меньше среднего показателя довольно проблематично, а точнее - почти невозможно. Это и называется нормальным распределением.
Степенные законы
Системы с большим количеством взаимодействующих элементов естественным образом эволюционируют к критическому состоянию, в котором малое событие может привести к катастрофе. Явление самоорганизованной критичности объясняет динамику землетрясений, рынков и экосистем.
ПЕР БАК, КАН ЧЕМ
В июле 1848 года в Париже родился будущий экономист Вильфредо Парето. Получив физико-математическое образование, и занимаясь экономикой, он обнаружил, что распределение вероятностей не ограничивается гауссовым, а в некоторых случаях имеет иной вид, а именно вид степенной функции. Такой вывод он сделал, построив график распределения богатства среди своих сограждан. Как ни странно на графике оказалось не гуассово распределение.
Оказалось, что функция имеет степенной вид f(в)~1/вб, б?1. Это произошло потому, что если бы распределение казалось гауссовым, то вероятность найти богатого человека была бы ничтожно мала, что невозможно. Таким образом оказалось, что существуют системы, в которых вариантность возникновения критических событий гораздо больше чем раннее считалось, и этим количеством уже нельзя пренебрегать. С развитием этой теории оказалось, что во многих системах можно найти какие угодно отклонения от усреднённого показателя, и это не редкость. Вскоре это наблюдение было дополнено. Первым делом, исследователи рассмотрели изменение цены на акцию в ограниченный период времени, в полной уверенности, что распределение будет «нормальным». Но, к их удивлению, распределение оказалось степенным, что легко объяснить многочисленными примерами экономических кризисов. На этой почве возникло понятие «тяжёлых хвостов распределения». «Тяжёлыми» они называются, потому что убывают медленнее «хвосты» гауссовых распределений.
Рис.
1- Степенное распределение, 2- гауссово распределение.
Графически они выглядят как отклонение от среднего показателя, но в отличае от такого же отклонения в гауссовом распределении, в степенном этими отклонениями пренебрегать нельзя, в них во многом как раз и заключается суть данной теории. Дело в том, что несмотря на редкость событий описываемых в области «тяжёлых хвостов», их масштабами и последствиями пренебрегать нельзя.
Удобнее всего изображать степенную зависимость распределения вероятностей в системе в дважды лографмическом пространстве, т.к. таким образом проще найти б (числовое значение вероятности).
f(в)~ 1/вб
ln f(в)~ ln 1/вб
ln f(в)~-бlnв,
это линейная зависимость, при посторении грфика которой, тангенс угла равен значению б. Кроме того, линейную зависимость изобразить проще, чем чертить каждый раз ветвь гиперболы. Вот, например, графическое изображение закона Ципфа. В нём изображена вероятность распределения некоторых слов в английском тексте.
[11]
(ранг (r) - номер в списке, упрядоченном по убыванию, а в данном случае - по частоте употребления)
Из примеров видно, что степенные законы описывают не только разрушительные события, но и привычные, обыденные вещи.
Тем не менее, при описании критических событий с помощью степенного распределения, опасность явления определяется его показателем (б). Чем меньше б, тем опасней явление. На основе этого разделяют бедствия (где б > 1), и катастрофы (где б < 1). [9]
Универсальные механизмы возникновения и развития катастрофических событий
Катастрофические события, как ранее было сказано, происходят в сложных системах. Теперь я лишь хочу уточнить, что эти системы инвариантны относительно изменений масштаба и состоят из других систем.
Чтобы описать теорию самоорганизованной критичности в общем виде, как правило, используют кучу песка.
[5]
Допускается тот факт, что песчинки между собой довольно плотно сцеплены, т.е. можно пренебречь незначительной величиной расстояния между песчинками, в то время как величина, которая играет существенную роль для данного эксперимента - угол наклона. Итак, существует некий средний угол наклона z и некоторый критический угол наклона, при котором возникает движение песчинок по куче, т.е. ток песка J. При z никакого движения не происходит, но при процессе J z стремительно увеличивается. Таким образом, z является управляющим параметром, J - параметром порядка. Кроме того, существует знчение zc, которое является своеобразной границей между хаотической (z <zc) и упорядоченной (z > zc) фазами, и критическая точка (z = zc), в которой малейшее изменение (а именно - добавление одной песчинки, флуктуация) может привести к катастрофе любого масштаба. Поместить кучу песка в такое «критическое» состояние можно либо самим, посторив такую кучу, либо опытным путём, наблюдая за поведением системы, позволив ей проявить чудеса самоорганизации, подсыпая по одной песчинке на вершину. В первом случае мы отрегулируем управляещий параметр до соответствия равенству z = zc, во втором случае мы отрегулируем параметр порядка.
Для этого явления, также как для многих, существует модель, позволяющая наглядно проследить за движением и реакцией песчинок, до момента достижения критической точки, во время и после. Эта модель представляет собой двухмерный клеточный автомат, в котором куча представлена в виде двухмерной гексагональной решетки. В ячейках этой решётки находятся единицы и нули, обозначающие локальный наклон поверхности.
Единицы и нули говорят об устойчивом положении песчинки: когда локальный наклон превышает единицу, то возникает ток песка, т.е. осыпание. В модели это обозначается тем, что в ячейке стоящее в ней число уменьшается на 2, при этом значения в 2-х ячейках, стоящих ниже, увеличивается на 1. Итак, прибавление одной песчинки в реальной модели будет выглядеть как увеличение значения в верхней ячейке в клеточном автомате. Но увеличением показателя в одной ячейке это не ограничится, потому что по вышеуказанному алгоритму изменяются, как минимум, показатели двух ячеек. Таким образом, в какой-то момент в качестве реакции на добавление одной единицы, возникнет не просто осыпание, а лавина, которая будет продолжаться до обретения системой состояния устойчивости. Когда система обретёт равновесие, процесс релаксации будет считаться законченным. Осыпания происходят сверху вниз, не затрагивая при этом один и тот же слой 2 раза.
Характеристикой лавнины осыпаний является её размер S, т.е. число ячеек, где произошло осыпание. Лавины распределены по размеру степенным образом с показателем, равным 1/3, что подтверждается симуляцией модели, результаты которой приведены на рисунке ниже.
[8]
Линейная часть графика соответствует степенному распределению с ? = 1/3. Отклонение от масштабно инвариантного поведения при больших S связано с конечностью размеров системы. Развитие очень больших лавин обрывается из-за достижения ими нижнего края решетки, что обуславливает горб в правой части графика. Такие события можно трактовать как сверхкатастрофы - порождающая их система оказывается мала для нормального завершения этих лавин.[8]
«Масштабно инвариантное распределение означает склонность системы к катастрофам. Её отклик на элементарное воздействие не имеет собственного характерного размера, и поэтому в ней возможны гигантские события без отчётливых причин. И хотя для каждой лавины можно указать ту самую песчинку, которая её спровоцировала, корни катастроф лежат, конечно же, не в песчинках, а в критических свойствах системы, где малые причины могут вызывать большие следствия.»[5]
Прогнозирование катастрофических событий
Из примера с кучей песка, стало очевидным, что катастрофическое событие не происходит внезапно, ему предшествуют менее значительные события. Прогнозирование катастрофических событий ведётся практически во всех областях современной науки.
Оценка вероятностей аварий на нефтеперерабатывающих, нефтехимических и химических предприятиях. [9]
В таблице представлено число пострадавших в 36-ти авариях в этой области за период 1974-2005 годы.
Из-за «тяжёлого хвоста распределения», среднее значение числа пострадавших не содержит полезной информации. А вот график распределения вероятностей в дважды логарифмическом пространстве даёт нам весьма ценную информацию.
[9]
В данном случае б=0,4872.
Благодаря этому можно сказать, что авария с ущербом 2,1 млн. пострадавших повторяется в среднем раз в 255 лет. К сожалению, на данный момент нет возможности учесть будущее развитие промышленности в этой отрасли, чтобы стало возможным получить более точную информацию, тем не менее всегда есть возможность снова произвести расчеты, руководствуясь новыми показателями.
Перейдём к природным катастрофам. Их разрушительность сравнима с потерями при военных действиях, но они более внезапны и не оставляют возможности «дать сдачи». Как было показано выше, несмотря на общепринятое мнение, благодаря набору опреденённых знаний, навыков и имея доступ к необходимой информации, становится возможным довольно точно спрогнозировать надвигающуюся катастрофу. Благодаря своевременому прогнозу возможно нивелировать последствия стихийных бедствий. Безусловно, в таком случае не последнюю роль играет планирование реакционных действий. В совокупности, действия по прогнозу катастрофических событий и их ликвидации или сглаживании, называются управлением рисками. При этом немаловажным фактором является вычесление степени риска, что делается посредством использования рассмотренных выше степенных законов. Таким образом, риск характеризуется как частота и последствия того или иного бедствия, а благодаря степенным законам и то и другое можно вычислить. Другое дело - кто будет этим заниматься, кто профинансирует и обеспечит всем необходимым специалистов, готовых изучать и прогнозировать. Пример эффективного использования возможностей современной науки можно найти в ближайшем зарубежье.
Риск природных катастроф является частым и одним из наиболее опасных явлений в современном мире. На нашей планете существует место под названием Ферганская долина. Этот участок на поверхности земли характеризуется как межгорная котловина. Район в котором она расположена является повышенно сейсмичным, кроме того площадь долины находится на территории трёх разных государств: Таджикистана, Узбекистана и Кыргызстана. Кроме того, плотность населения в этом районе довольно велика: 900, 360 и 500 человек на 1км2. На этой территории довольно часто проявляются те или иные стихийные бедствия. Существует предрасположенность данного участка к возникновению крупномасштабных природных катастроф, что может нанести существенный урон государствам. Наиболее опасными считаются оползни и сели, а также наводнения.
Именно этот участок суши был подвергнут исследованиям учёных. Со временем возникла возможность составлять прогноз активизации оползней. Это произошло благодаря применению свойств степенных законов, о которых неоднократно говорилось выше. Для получения подобных результатов потребовался анализ многолетнего цикла изменения основных факторов, влияющих на систему. Например, оползни. Оползни возникают при нарушении устойчивости склона в момент, когда сила связанности грунтов оползневого склона или горных пород оказывается меньше силы тяжести. При определённых условиях, таких как малоустойчивое состояние склона, решающей «песчинкой» может послужить небольшое землетрясение, выпас скота, неправильная стратегия применения противооползневых методов и т.п. Для получения максимально точного прогноза, необходимо объединить усилия специалистам на разных уровнях управления рисками. Безусловно, регулярный наносимый ущерб, возникающий вследствие стихийных бедствий, может быть снижет, за счёт создания центра по прогнозированию катастроф. К сожалению, на сегодняшний день в Ферганской долине не существует ни одной системы по управлению рисками, что существенно сказывается на экономике стран, на долю которых приходится та или иная часть территории это долины. Как только начнутся крупно-масштабные стихийные бедствия в данном регионе, попытки снизить ущерб будут локальными и безрезультатными, по причинам низкой организации спасательных служб трёх стран, и почти отсутствующей связи между службами этих стран. Таким образом, Ферганская долина и её жители, вследствие низкого уровня экономического развития, природных факторов, низкого уровня взаимодействия служб спасения, и отсутствия центра прогнозирования и исследований, находятся в довольно плачевной ситуации, выход из которой заключается в объединении сил трёх стран, для создания единой системы управления риском, и в том числе финансово-политическими отношениями, возникающими в процессе этого управления.
Заключение
При рассмотрении небольшого участка суши, принадлежащему трём разным странам, был выявлена серьёзная проблема, грозящая существенным уроном всем сферам этих государств. Что уж говорить об актуальности данной темы в рамках более глобальных и развитых систем, таких как международные рынки, курсы валют и прочее. Возможность прогнозирования их поведения даёт уникальные возможности, описанные во многих фантастических книгах, возможности сопоставимые с миссией спасения человечества.
Многочисленные примеры экономических кризисов, природных катастроф, социальных и политических реформ, поддаются математическому описанию и прогнозированию. Современная наука устремилась в будущее, уверенно преодолевая возникающие препятствия. На данный момент существует всё необходимое, чтобы во всеоружии направляться навстречу трудностям. Остается проблема финансирования и организации соответствующих научных центров. К сожалению, в России специалисты по управлению рисками не имеют возможности работать в соответствующем направлении, что приводит к возрастающим потерям и ущербу вследствие бедствий и катастроф.
Литература
1. Малинецкий Г.Г. Управление Риском. Глава X Самоорганизованная критичность, как универсальный механизм катастроф. http://www.keldysh.ru/papers/2003/source/book/gmalin/gl10.htm
2. Малинецкий Г.Г. Управление Риском. Глава V статистика катастрофических событий. http://www.keldysh.ru/papers/2003/source/book/gmalin/gl5.htm
3. А.Чуличков. Теория катастроф и развитие мира. http://katastrofa.h12.ru/theory.htm
4. Самоорганизованная критичность. http://katastrofa.h12.ru/krit.htm
5. А.В.Подлазов. Теория самоорганизованной критичности - наука о сложности. http://theorphys.mipt.ru/mezhpr/mezhpred2/podlazov.pdf
6. За горизонтом предсказуемости. http://n-t.ru/tp/mr/zgp.htm
7. Зиман. Теория катастроф. http://www.omegafield.net/library/dynamical/zeeman-catastrophe_theory.pdf
8. Г.Г.Малинецкий, А.В.Подлазов, И.В.Кузнецов. О национальной системе научного мониторинга. http://www.keldysh.ru/papers/2004/prep47/prep2004_47.html
9. Д.В. Токарев. Оценка вероятностей аварий на нефтеперерабатывающих, нефтехимических и химических предприятиях. http://www.ogbus.ru/authors/Tokarev/Tokarev_2.pdf
10. Изучения закона распределения нормальных величин. http://kfmirea.ru/upload/lab_1-71.pdf
11. Шредер. Фракталы, Хаос, Степенные законы.
12. Энциклопедический фонд России. Бифуркация. http://www.russika.ru/termin.asp?ter=3496
Страницы: 1, 2