Рефераты. Характеристика опционов, стратегии использования, оценка стоимости

конвертируема в 20 акций, текущий курс которых - $60) и цена отзыва

составляет $1100, то фирма может заставить осуществить конверсию, приняв

решение о ее отзыве. Когда инвестор получает сообщение об отзыве, у него

есть два варианта - или осуществить конверсию и получить 20 акций на сумму

$1200 или получить сумму $1100. В этом случае инвестор выберет акции,

потому что они стоят больше.

С практической точки зрения конвертируемая облигация - это облигация с

неотделяемым варрантом плюс условие о том, что только облигация (по

номиналу) может быть использована для оплаты цены исполнения. Если

облигация не содержит условия отзыва, то сумма данного пакета равна

стоимости простой неотзывной облигации (т.е. оценочной инвестиционной

стоимости) плюс стоимость варранта. Однако большая часть конвертируемых

облигаций является отзывными и, таким образом, включает двойной опцион:

держатель имеет право обменять облигацию на акцию, а корпорация имеет право

выкупить облигацию у инвестора.

Оценка стоимости опционов

ОПЦИОН «КОЛЛ» НАЗЫВАЮТ ОПЦИОНОМ БЕЗ ВЫИГРЫША (AT THE MONEY), ЕСЛИ

РЫНОчНАя ЦЕНА БАЗИСНОГО АКТИВА ПРИМЕРНО РАВНА ЦЕНЕ ИСПОЛНЕНИя ОПЦИОНА

«КОЛЛ». ЕСЛИ ЦЕНА АКТИВА НИЖЕ ЦЕНЫ ИСПОЛНЕНИя, ТО ТАКОЙ ОПЦИОН НАЗЫВАЮТ

ОПЦИОНОМ С ПРОИГРЫШЕМ ("ВНЕ ДЕНЕГ" ИЛИ "В МИНУСЕ" ) OF THE MONEY. ЕСЛИ

РЫНОчНАя ЦЕНА ВЫШЕ ЦЕНЫ ИСПОЛНЕНИя, ТО ОПЦИОН ИМЕННУЮ ОПЦИОНОМ С ВЫИГРЫШЕМ

("В ДЕНЬГАХ", "В ПЛЮСЕ) (IN THE MONEY). ИНОГДА ИСПОЛЬЗУЮТ ЕЩЕ БОЛЕЕ ТОчНЫЕ

ХАРАКТЕРИСТИКИ, НАПРИМЕР, МОЖНО УСЛЫШАТЬ ТАКИЕ ОПРЕДЕЛЕНИя, КАК «ОКОЛО

ВЫИГРЫША», «С БОЛЬШИМ" ВЫИГРЫШЕМ» ИЛИ «С БОЛЬШИМ ПРОИГРЫШЕМ».

Стоимость опциона при немедленном исполнении называется его внутренней

стоимостью. Иногда для оценки премии опционов "вне денег" используется

термин "потерянная стоимость". Эта стоимость равна нулю для опциона без

выигрыша. Если опцион с выигрышем, то стоимость равна разности между ценой

актива и ценой исполнения. Превышение цены опциона над его внутренней

стоимостью называют временной стоимостью (time value) (или временной

премией).

.Временная стоимость (time value) опциона - величина, на которую цена

опциона превышает его внутреннюю стоимость. Фактически, это стоимостное

выражение времени, остающегося до истечения опциона. Временная составляющая

снижается с приближением окончания срока действия опциона. Когда опцион

переходит в состояние "вне денег", он теряет внутреннюю стоимость, и его

цена становится равной временной составляющей.

1. Внутренняя стоимость

СТОИМОСТЬ ОПЦИОНА СВяЗАНА СО СТОИМОСТЬЮ БАЗИСНОГО АКТИВА, И ЭТА

ВЗАИМОСВяЗЬ СТАНОВИТСя НАИБОЛЕЕ ОчЕВИДНОЙ НЕПОСРЕДСТВЕННО ПЕРЕД МОМЕНТОМ

ИСТЕчЕНИя ОПЦИОНА. НА РИС. 1 (А) ПРЕДСТАВЛЕНА ЗАВИСИМОСТЬ МЕЖДУ СТОИМОСТЬЮ

ОПЦИОНА «КОЛЛ» С ЦЕНОЙ ИСПОЛНЕНИя $100 И ЦЕНОЙ БАЗИСНОЙ АКЦИИ ПРИ

ИСТЕчЕНИИ. ЕСЛИ ЦЕНА АКЦИИ НИЖЕ $100, ТО ОПЦИОН НЕ ИМЕЕТ НИКАКОЙ ЦЕННОСТИ.

ЕСЛИ ЦЕНА ВЫШЕ $100, ТО ОПЦИОН МОЖНО ИСПОЛНИТЬ ЗА $100 И ПОЛУчИТЬ АКТИВ,

КОТОРЫЙ СТОИТ ДОРОЖЕ. ЧИСТЫЙ ВЫИГРЫШ ПОКУПАТЕЛя ОПЦИОНА СОСТАВИТ РАЗНИЦУ

МЕЖДУ РЫНОчНОЙ ЦЕНОЙ АКТИВА И ЦЕНОЙ ИСПОЛНЕНИя, РАВНОЙ $100. ОДНАКО

ПОКУПАТЕЛЮ ОПЦИОНА НЕТ НЕОБХОДИМОСТИ ИСПОЛНяТЬ ЕГО В ДЕЙСТВИТЕЛЬНОСТИ.

ПРОДАВЕЦ ОПЦИОНА МОЖЕТ ПРОСТО УПЛАТИТЬ ПОКУПАТЕЛЮ РАЗНОСТЬ МЕЖДУ ЦЕНОЙ

АКТИВА И $100 ЦЕНЫ ИСПОЛНЕНИя. ТАКИМ ОБРАЗОМ, ОБЕ СТОРОНЫ МОГУТ ИЗБЕЖАТЬ

НЕУДОБСТВ, СВяЗАННЫХ С ИСПОЛНЕНИЕМ. ТАКАя СИСТЕМА ОБЫчНО ПРАКТИКУЕТСя ДЛя

БИРЖЕВЫХ ОПЦИОНОВ (С ИСПОЛЬЗОВАНИЕМ ОСС), НО НЕКОТОРЫЕ ИНВЕСТОРЫ

ПРЕДПОчИТАЮТ ФАКТИчЕСКОЕ ИСПОЛНЕНИЕ ОПЦИОНОВ, ВОЗМОЖНО, В СВяЗИ С

НАЛОГОВЫМИ СООБРАЖЕНИяМИ.

[pic]

Рисунок 1

На рис. 1 (б) представлена стоимость опциона «пут» с ценой исполнения

$100 при истечении. Если цена акции выше $100, то опцион не будет иметь

стоимости. Если цена ниже $100, то опцион можно исполнить, чтобы получить

$100 за акцию, которая стоит меньше, и, таким образом, получить чистый

выигрыш, равный для покупателя опциона разности между $100 цены исполнения

и рыночным курсом акции. Как и в случае с опционом «колл», ни покупатель,

ни продавец опциона могут не связываться с реальными акциями. Продавец

опциона «пут» может просто уплатить покупателю разницу между курсом акции и

$100 цены исполнения.

На двух частях рис. 1 линии, обозначающие стоимость опционов «колл» и

«пут» при истечении, можно рассматривать как стоимость опционов «колл» и

«пут» в момент исполнения, независимо от того, в какой именно момент

времени в рамках действия контракта это исполнение произойдет. Для опционов

«колл» ломаная линия, соединяющая точки Е, Z и $200 представляет собой

внутреннюю стоимость (intrinsic value) опциона «колл». Аналогично, ломаная

линия, соединяющая точки Z, Е и 0 представляет собой внутреннюю стоимость

опциона «пут».

Ломаные линии внутренней стоимости опционов «колл» и «пут» на рис. 1

обозначим соответственно через Q1,. и Q2,. Они равны:

Q1. = max {0,Р -E}; (рис. 1а)

Q2, = max {0,E- P}, (рис. 1 6)

Где, P- рыночный курс базисной акции и Е — цена исполнения опциона.

(Знак max означает, что необходимо использовать наибольшую величину из двух

значений в скобках.)

Ломаная линия внутренней стоимости имеет поворот в точке Е, так как

здесь встречаются две составляющие линии: горизонтальная линия (она

проходит через начало координат и точку E) и линия, которая от точки E

поднимается под углом 45 градусов на северо-восток (и имеет угол наклона,

равный 1).

Опционы «колл» и «пут» не будут продаваться дешевле их внутренней

стоимости так как этим воспользуются опытные инвесторы. Если опцион стоит

меньше его внутренней стоимости, то инвесторы могут мгновенно получить

доход без риска. Например, если курс акции равен $150, а опцион «колл»

продается за $40, т. е. на $10 меньше его внутренней стоимости (которая

равна $50), то инвесторы одновременно купят опционы исполнят их и продадут

полученные от продавца опциона акции. Они затратят на каждый опцион $140,

включая цену исполнения, а в обмен на каждую проданную акцию получат $150.

В результате их чистый доход без риска составит $10 от одного опциона.

Поэтому опцион «колл» не будет стоить меньше $50, когда курс акции равен

$150.

.

2. Выигрыши и потери по опционам «колл» и «пут»

В ПРЕДЫДУЩЕМ ПАРАГРАФЕ ПРЕДСТАВЛЕНА СТОИМОСТЬ ОПЦИОНОВ «КОЛЛ» И «ПУТ»

ПРИ ИСТЕчЕНИИ. ОДНАКО чТОБЫ ОПРЕДЕЛИТЬ ВЫИГРЫШИ И ПОТЕРИ ОТ ПОКУПКИ ИЛИ

ПРОДАЖИ ОПЦИОНА, НЕОБХОДИМО ПРИНяТЬ ВО ВНИМАНИЕ ПРЕМИЮ. ЭТО СДЕЛАНО В

ПРАКТИчЕСКОЙ чАСТИ РАБОТЫ (СМ. РАСчЕТЫ В EXCEL), ГДЕ ПОКАЗАНЫ БОЛЕЕ СЛОЖНЫЕ

ОПЦИОННЫЕ СТРАТЕГИИ. ПРЕДПОЛАГАЕТСя, чТО ОБРАТНАя СДЕЛКА ОСУЩЕСТВЛяЕТСя

НЕПОСРЕДСТВЕННО ПЕРЕД ДАТОЙ ИСТЕчЕНИя ОПЦИОНА. ТАК КАК ВЫИГРЫШ ПОКУПАТЕЛя —

ЭТО ПРОИГРЫШ ПРОДАВЦА, И НАОБОРОТ, ТО КАЖДЫЙ ГРАФИК НА РИСУНКЕ ИМЕЕТ

ЗЕРКАЛЬНОЕ ОТРАЖЕНИЕ.

Рассмотрим сначала рис. 1 и 2. Ломаные линии выигрышей и потерь

представляют собой графики уравнения внутренней стоимости, минус премии по

опционам.

Таким образом, можно сделать вывод, что ломаная линия выигрышей «пут»

- это просто ломаная линия внутренней стоимости, равной Р, но смещенная

вниз на величину премии опциона «колл». Аналогично, ломаная линия выигрышей

опциона «пут» — это просто ломаная линия внутренней стоимости опциона «пут»

равной смещенной вниз на величину опциона пут.

Выводы и расчеты см. в приложении в виде файла Microsoft Excel.

Какова действительная (или настоящая) цена опциона сегодня, если он

истекает в некоторый момент времени в будущем? Чтобы ответить на этот

вопрос, воспользуемся биноминальным методом оценки стоимости опциона. Он

рассматривается ниже.

3. Биноминальная модель оценки стоимости опционов

ДЛя ОЦЕНКИ СТОИМОСТИ ОПЦИОНА «КОЛЛ» ИЛИ «ПУТ» МОЖНО ИСПОЛЬЗОВАТЬ

БИНОМИНАЛЬНУЮ МОДЕЛЬ ОЦЕНКИ СТОИМОСТИ ОПЦИОНА (ВОРМ). ЛУчШЕ ВСЕГО

ПРЕДСТАВИТЬ ЕЕ НА ПРИМЕРЕ ЕВРОПЕЙСКОГО ОПЦИОНА (EUROPEAN OPTION), Т.Е.

ОПЦИОНА, КОТОРЫЙ МОЖЕТ БЫТЬ ИСПОЛНЕН ТОЛЬКО В ДЕНЬ ЕГО ИСТЕчЕНИя. В ЭТОМ

СЛУчАЕ МЫ ПРЕДПОЛАГАЕМ, чТО ПО БАЗИСНОЙ АКЦИИ НЕ ВЫПЛАчИВАЮТСя ДИВИДЕНДЫ В

ТЕчЕНИЕ СРОКА ДЕЙСТВИя ОПЦИОНА. МОДЕЛЬ ТАКЖЕ МОЖНО МОДИФИЦИРОВАТЬ ДЛя

ОЦЕНКИ СТОИМОСТИ АМЕРИКАНСКОГО ОПЦИОНА (AMERICAN OPTION), Т.Е. ОПЦИОНА,

КОТОРЫЙ МОЖНО ИСПОЛНИТЬ В ЛЮБОЕ ВРЕМя В ТЕчЕНИЕ СРОКА ДЕЙСТВИя ОПЦИОНА.

МОДЕЛЬ ТАКЖЕ МОЖНО ИСПОЛЬЗОВАТЬ ДЛя ОЦЕНКИ СТОИМОСТИ ОПЦИОНОВ НА АКЦИИ, ПО

КОТОРЫМ ВЫПЛАчИВАЮТСя ДИВИДЕНДЫ В ТЕчЕНИЕ СРОКА ОПЦИОННОГО КОНТРАКТА.

9 Для опционов «колл»

Предположим, что цена акции компании Wopov сегодня (t = 0) равна $100,

а через год (t= 1) эта акция будет стоить $125 или $80, т.е. цена акции за

год или поднимется на 25%, или упадет на 20%. Кроме того, непрерывно

начисляемая ставка без риска в расчете на год равна 8%.

Предполагается, что инвесторы могут предоставлять кредит (покупая 8%-

ные облигации) и занимать средства (осуществляя «короткие» продажи

облигаций) под данный процент.

Рассмотрим опцион «колл» на акции компании Wopov с ценой исполнения

$100 и датой истечения через год. Это означает, что на дату истечения

стоимость опциона «колл» составит или $25 (если акция Wopov стоит $125),

или $0 (если акция Wopov стоит $80). На рис. 2 (а) данная ситуация

представлена с помощью «дерева цены». Поскольку оно имеет только две

«ветви», которые показывают цены на дату истечения, модель называется

биноминальной.

Рисунок 2

1 Оценка стоимости

Если надо узнать, чему равна внутренняя (действительная) стоимость

опциона в момент времени 0, то для ответа на этот вопрос используется

биноминальная модель оценки стоимости опциона.

Мы располагаем тремя возможностями делать инвестиций: вложить средства

в акцию, опцион и облигацию без риска. Цены и результаты операции с акцией

известны. Также известно, что $100 инвестируются в безрисковую облигацию,

стоимость которой вырастет приблизительно до $108,33 с учетом непрерывно

начисляемого процента равного 8% годовых10. Наконец, известны результаты

опционной операции в конце периода. Требуется определить цену продажи

опциона в настоящий момент.

Мы предположили, что возможны два положения вещей в будущем. Курс

акции может пойти вверх или вниз. Для краткости назовем эти два состояния

соответственно «верхнее положение» и «нижнее положение». Основные данные

приводятся ниже:

|Ценная бумага|Выплаты в |Выплаты в |Текущий курс |

| |«верхнем |«нижнем | |

| |положении» |положении» | |

|Акция |$125,00 |$80,00 |$100 |

|Облигация |$108,33 |$108,33 |$100 |

|Опцион «колл»|$25,00 |$0,00 |Надо найти |

2 Моделирование портфелей с одинаковыми характеристиками

Несмотря на то что опцион «колл» на акции компании Wopov может

показаться несколько необычным инструментом, его характеристики можно

воспроизвести комбинацией акций компании Wopov и безрисковых облигаций.

Более того, стоимость воспроизведенного портфеля составляет действительную

стоимость опциона. Потому что в противном случае возникнет возможность

совершить арбитражную операцию — инвестор может купить наиболее дешевый из

двух альтернативных портфелей и продать более дорогой из них и таким

образом получить гарантированный доход.

Сначала необходимо определить состав портфеля, который точно повторит

выплаты по опциону «колл» на акции компании Wopov. Рассмотрим портфель из

Ns акций компании Wopov и Nb безрисковых облигаций. В «верхнем положении»

такой портфель принесет выплаты в размере $125 Ns + $108, ЗЗ Nb , в «нижнем

положении» выплаты со-составят $80 Ns +$108,33 Nb В «верхнем положении»

опцион стоит $25. Таким образом, Ns и Nb должны иметь такую стоимость,

чтобы:

$125 Ns + $108,ЗЗ Nb = $25 (1)

C другой стороны, в «нижнем положении» опцион ничего не стоит. Таким

образом, Ns и Nb должны иметь такую стоимость, чтобы:

$80 Ns + $108,33 Nb = $0 (2)

В приведенных линейных уравнениях имеются два неизвестных и они могут

быть легко определены. Вычитая второе уравнение из первого, получим:

($125 -$80) Ns =$25 (3)

откуда Ns равно 0,5556. Подставив данное значение в уравнение (1) или

уравнение (2), получим значение Nb = -0,4103.

Что это означает на финансовом языке? Это значит, что инвестор может

воспроизвести платежи по опциону «колл», осуществив «короткую» продажу

безрисковой облигации за $41,03 (заметьте, что инвестирование 0,4103 в 100-

долларовую облигацию эквивалентно «короткой» продаже облигации за $41,03

или получение кредита в размере $41,03 по ставке без риска) и купив 0,5556

акций компании Wopov. Что это действительно так, можно увидеть из

нижеследующего:

|Состав |Выплаты в «верхнем |Выплаты в «нижнем |

|портфеля |положении» |положении» |

|Инвестиции в |0,5556 х $125,00=69,45|$0,5556х$80,00=44,45 |

|акции | | |

|Выплата займа |-$41,03х1,0833=-44,45 |-$41,03х1,0833=-44,45 |

|Чистая выплата|$25,00 |$0,00 |

Так как воспроизведенный портфель обеспечивает те же выплаты, что и

опцион «колл», то для определения действительной стоимости опциона

необходимо определить его стоимость. Чтобы сформировать портфель, надо

затратить $55,56 на покупку 0,5556 акций компании Wopov (по цене $100 за

акцию). Кроме того, $41,03 получается от «короткой» продажи облигации.

Таким образом, требуется только $14,53 ($55,56 -$41,03) собственных средств

инвестора. Следовательно, это и есть действительная стоимость опциона

«колл»

В общем виде, стоимость опциона «колл» будет равна:

V0=NsxPs+NbxPb

где V0 - стоимость опциона; Ps — цена акции; Pb — цена безрисковой

облигации; Ns. и Nb - число акций и безрисковых облигаций, позволяющих

воспроизвести выплаты по опциону.

3 Переоценка стоимости опциона

Чтобы показать, что при цене опциона в $14,53 будет наблюдаться

равновесное положение, посмотрим, что может сделать опытный инвестор, если

опцион «колл» продается по более высокой или низкой цене. Предположим,

опцион «колл» продается за $20, т.е. он переоценен. В этом случае инвестор

решит выписать опцион, купив 0,5556 акций и заняв $41,03. Получаемая сумма

в этом случае (т.е. для t= 0) составит $5,47 [$20 — (0,5556 х $100) +

$41,03], что показывает чистый приток средств для инвестора, В конце года

(т.е. для t = Т) инвестор получит следующие средства:

|Состав портфеля|Выплата в «верхнем |Выплата в |

| |положении» |«нижнем |

| | |положении» |

|Продажа опциона|-$25,00 |0,00 |

|Инвестиции в |0,5556х$125 = $69,45 |0,5556 х $80 = |

|акции | |$44,45 |

|Возврат займа |-$41,03 х 1,0833 = |-$41,03х 1,0833 |

| |-$44,45 |= -$44,45 |

|Чистые выплаты |$0,00 |$0,00 |

Так как независимо от окончательной цены акции общая стоимость равна

нулю, то при осуществлении данной стратегии риск для инвестора отсутствует.

Таким образом, инвестор имеет возможность получать свободные средства до

тех пор, пока опцион «колл» стоит $20, так как инвестиционная стратегия не

требует в последующем от инвестора больше никаких затрат. Подобная ситуация

не может быть равновесной, так как в этом случае любое лицо может получить

свободные деньги аналогичным образом

4 Недооценка стоимости опциона

Представим теперь, что опцион «колл» продается за $10 вместо $20, т.е.

он недооценен. В этом случае инвестор решит купить один опцион «колл»,

получив средства от «короткой» продажи 0,5556 акций, и инвестировать $41,03

под безрисковую ставку. Чистая денежная сумма после этого (т.е. для /= 0)

составит $4,53 [-$10 + (0,5556 х $100) - $41,03]. Это означает, что

инвестор получит чистый приток денежных средств. В конце года (т.е. для t =

7) инвестор получит следующие средства:

|Состав портфеля |Выплата в «верхнем |Выплата в «нижнем |

| |положении» |положении» |

|Инвестиции в |25,00 |0,00 |

|опцион «колл» | | |

|Возврат средств по|-0,5556х $125= -$69,45 |-0,5556 х $80 = -$44,45 |

|«короткой» продаже| | |

|акций | | |

|Безрисковое |$41,03х 1,0833 = $44,45 |$41,03 х 1,0833 = $44,45|

|инвестирование | | |

|Чистые выплаты |$0,00 |$0,00 |

И снова независимо от итогового курса акции общая стоимость портфеля

paвна нулю. Это означает, что при осуществлении данной стратегии для

инвестора отсутствует риск потерь. Таким образом, инвестор имеет

возможность получать свободные деньги до тех пор, пока опцион «колл» стоит

$10. Такая ситуация не может быть равновесной, поскольку любое лицо может

получить свободные средства аналогичным образом.

5 Коэффициент хеджирования

Допустим, что мы занимаем $41,03 и покупаем 0,5556 акций компании

Wopov и таким образом, воспроизводим опцион «колл» на эти акции. Теперь

рассмотрим то влияние которое окажет на стоимость воспроизведенного

портфеля изменение курса акций завтра (а не через год). Так как в портфель

входит 0,5556 акций, то стоимость портфеля изменится на $0,5556 при

изменении курса акций Wopov на $1. Но так как опцион «колл» и портфель

должны продаваться по одной цене, то цена опциона «колл» также должна

измениться на $0,5556 при изменении курса акции на $1. Данная взаимосвязь

называется коэффициентом хеджирования (hedge ratio) опциона. Он равен числу

Ns которое было определено в уравнении выше.

Для опциона «колл» на акции компании Wopov коэффициент хеджирования

составлял 0,5556, что равно ($25 - $0)/($125 - $80). Обратите внимание на

то, что числитель равен разности между выплатами по опциону в «верхнем» и

«нижнем» положениях, а знаменатель - разности между выплатами по акции в

этих двух положениях. В общем виде в биноминальной модели:

h=(Pou-Pod)/(Pso-Psd)

где P- это цена в конце периода, а индексы обозначают инструмент (о -

опцион, s -акция) и положение (и - «верхнее», d - «нижнее»).

Чтобы воспроизвести опцион «колл» в условиях биноминальной модели,

необходимо купить h акций. Одновременно необходимо получить под ставку без

риска средства путем «короткой» продажи облигации. Эта сумма равна:

B=PV(hPsd- Pod)

где PV- дисконтированная стоимость суммы, указанной в скобках

(стоимости облигации в конце периода). В итоге стоимость опциона «колл»

равна:

V0=hPs-B

где h и В - это коэффициент хеджирования и текущая стоимость

«короткой» позиции по облигации в портфеле, который воспроизводит выплаты

по опциону «колл».

Вполне резонно усомниться в точности модели ВОРМ, когда она основана

на предположении, что курс акции компании Wopov может принимать в конце

года только одно из двух значений. В действительности курс акции Wopov

может принять в конце года любое из множества значений. Однако это не

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.