Рефераты. Разработка канала для комплексной скважинной аппаратуры

p align="left">Основные характеристики указанных термисторов [6]:

1. Рабочий диапазон температур (-50...+150) ?С;

2. Чувствительность (ТКС) (-4...-5) %/ ?С;

3. Погрешность из-за изменения характеристик во времени в течение 10 лет 0,01 ?С/год;

4. Погрешность из-за разброса характеристик от экземпляра к экземпляру в диапазоне (0...70) ?С (эта погрешность может быть исключена путем индивидуальной калибровки датчика) ±0,2 ?С;

5. Сопротивление различных термисторов при температуре 25 ?С

от 100 Ом до 1МОм;

6. Постоянная времени в жидкости у малоинерционных датчиков 0,3 с;

7. Малые габариты (например, миниатюрные термисторы microchip имеют диаметр 0,457 мм и длину 3,2 мм).

Таким образом, указанные термисторные преобразователи миниатюрны, малоинерционны, обладают высокой чувствительностью и долговременной стабильностью характеристик. Что касается нелинейности функции преобразования, то применение микропроцессоров или микро-ЭВМ позволяет легко учитывать реальную нелинейную функцию преобразования.

Следует отметить, что высокая чувствительность и большое сопротивление термисторов существенно упрощают построение последующих измерительных преобразователей и обеспечивают достижение высокой точности и разрешающей способности.

Таким образом, применение современных термисторов в средствах измерений для термического каротажа и соответствующих алгоритмов обработки информации и калибровки приборов позволяют обеспечить высокую точность измерений в широком диапазоне температур, высокую разрешающую способность, долговременную стабильность характеристик, высокое быстродействие, простоту конструкции датчика и схемы его включения.

2 Разработка структурной схемы

2.1 Структурная схема комплексной скважинной аппаратуры (КСА)

Комплексная скважинная аппаратура контроля технического состояния скважин и разработки нефтяных месторождений ГеоПАЛС КСП 16 (далее аппаратура) предназначена для работы в совокупности с каротажной станцией и геофизическим подъемником и позволяет осуществлять геологотехнологический контроль состояния скважин и контроль разработки нефтяных месторождений.

Контроль технического состояния скважин и контроль разработки нефтяных месторождений осуществляется путем измерения и передачи по каротажному кабелю телеметрической информации о температуре, давлении, влагосодержании и электрической проводимости флюида, магнитных неоднородностях (локация муфт), интенсивности притоков (термокондуктивная индикация притоков), гамма-активности, геохимических параметрах флюидов (водородный показатель pH, концентрации ионов натрия, хлоридов и т.п.), расхода жидкости.

Скважинная аппаратура состоит из базового модуля, транзитного модуля резистивиметра, транзитного гидрогеохимического модуля и модуля расходомера. Все модули имеют унифицированные стыковочные узлы.

Электрическое соединение модулей включает в себя 3 контакта: шина питания ( +5 В), информационная шина и общая шина (“земля”).

Передача измерительной информации со скважинной аппаратуры в геофизический регистратор осуществляется по геофизическому кабелю (максимальная длина каротажного кабеля 5000 м). Она предназначена для работы с серийно выпускаемыми геофизическими регистраторами типа ОНИКС, ГЕКТОР, КЕДР и т.п. При этом используется временное разделение каналов, двоичное кодирование и последовательная передача кодов по кабелю с помощью фазо-разностной модуляции. Аппаратура обеспечивает практически одновременное измерение и регистрацию 16 измеряемых параметров.

Структурная схема скважинной аппаратуры приведена на рис. 2.1.

На схеме изображены базовый модуль БМ и дополнительные модули: модуль электропроводности МЭ (модуль резистивиметра), гидрогеохимический модуль ГГХМ и модуль расходомера МР.

Через контакты разъемов во все модули проходят 3 шины: общая шина (“земля”), шина питания (+5 В) и шина информации. Передача измерительной информации и команд управления по информационной шине осуществляется в цифровой форме с адресацией.

Такая структура скважинной аппаратуры позволяет практически без ограничений изменять количество и состав дополнительных модулей, а также обеспечивает возможность изменять количество и назначение измерительных каналов, входящих в состав базового модуля в процессе дальнейшего развития аппаратуры.

Модуль расходомера МР содержит датчик расхода ДР турбинного типа и микропроцессор МП1, который преобразует частоту повторения импульсов датчика в цифровой код.

Гидрогеохимический модуль ГГХМ содержит два измерительных электрода ИЭ1 и ИЭ2 и электрод сравнения ЭС, подключенные ко входам измерительного преобразователя ИП1. Все электроды легко вставляются в соответствующие гермовводы ГГХМ, что облегчает их обслуживание и замену. Измерительный преобразователь ИП1 имеет высокое входное сопротивление (порядка 1012 Ом) и обеспечивает измерение разностей потенциалов между каждым измерительным электродом и электродом сравнения, а также между ЭС и корпусом прибора.

Микроконвертор МК1 преобразует все вышеуказанные напряжения в цифровые коды и передает их по информационной шине в микропроцессор МП2.

Модуль электропроводности (резистивиметр) содержит датчик электропроводности ДЭ, измерительный преобразователь ИП2 и микроконвеортор МК2. Датчик электропроводности ДЭ представляет собой индукционный (двухтрансформаторный) бесконтактный кондуктометрический преобразователь, выходной сигнал которого пропорционален электрической проводимости жидкости.

Измерительный преобразователь ИП2 осуществляет питание ДЭ переменным током и преобразование выходного сигнала ДЭ в постоянное напряжение. Микроконвертор МК2 преобразует это напряжение в цифровой код и передает его по информационной шине в микропроцессор МП2. Кроме того, МК2 и ИП2 реализуют алгоритм автоматической цифровой коррекции погрешностей резистивиметра, что обеспечивает достаточно высокую точность измерений в широком диапазоне электропроводностей и температур.

Базовый модуль БМ содержит три микроконвертора (МК3, МК4, МК5), каждый из которых обеспечивает работу двух измерительных каналов. Микроконвертор МК3 осуществляет питание датчиков давления (ДД) и термокондуктивного индикатора притока (ДСТИ), а также преобразование выходных сигналов этих датчиков в цифровые коды. Датчик давления ДД представляет собой серийно выпускаемый тензопреобразователь давления, выполненный по технологии “кремний на сапфире”. Для обеспечения высокой точности измерений давления в базовом модуле выполняется автоматическая цифровая коррекция дополнительной температурной погрешности и погрешности нелинейности ДД. Микроконвертор МК3 осуществляет питание ДД и преобразование его выходных сигналов в цифровые коды.

Датчик притока ДСТИ содержит термистор и нагреватель, питание которого включается (или выключается) оператором с помощью геофизического регистратора путем изменения тока питания скважинной аппаратуры.

Микроконвертор МК4 обслуживает каналы измерения температуры и влажности. В датчике температуры (ДТ) в качестве первичного преобразователя используется миниатюрный термистор, обладающий высокой чувствительностью и долговременной стабильностью характеристик. Для обеспечения высокой точности измерений применена нелинейная математическая модель функции преобразования термистора, которая используется для вычисления значения измеряемой температуры непосредственно в базовом модуле.

Датчик влажности ДВ представляет собой емкостной датчик диэлькометрического типа, электрическая емкость которого изменяется при изменении диэлектрической проницаемости исследуемой жидкости. Измерительный преобразователь ИП3 преобразует емкость ДВ в период повторения импульсов, который в свою очередь преобразуется в цифровой код с помощью счетчика-таймера, входящего в состав МК4.

Микроконвертор МК5 обслуживает локатор муфт и гамма-канал. Датчик локатора муфт ДЛМ представляет собой дифференциальный индуктивный преобразователь, реагирующий на изменения магнитного сопротивления внешней магнитной цепи. Измерительный преобразователь ИП4 осуществляет питание датчика ДЛМ переменным током и преобразование дифференциальной индуктивности в постоянное напряжение, которое затем преобразуется в цифровой код в микроконверторе МК5.

Для обеспечения надежной работы локатора муфт в широком диапазоне скоростей движения базового модуля в микроконверторе МК5 производится статистическая обработка данных, поступающих с ДЛМ, в результате которой выдаются два числа: оценка математического ожидания (МО) и оценка среднего квадратического отклонения (СКО).

Датчик гамма-канала ДГ включает в себя кристалл NaI (или CsI) и фотоэлектронный умножитель (ФЭУ) с высоковольтным источником питания. Выходной сигнал ДГ представляет собой случайную последовательность импульсов, средняя частота повторения которых пропорциональна интенсивности гамма-излучения. Для оценивания этой средней частоты в микроконверторе МК5 выполняется подсчет числа импульсов ФЭУ за 5с, причем производится скользящее усреднение со сдвигом на 1с.

Микропроцессор МП2 осуществляет управление информационной шиной, включая получение цифровых данных от всех датчиков базового и дополнительных модулей и передачу команд соответствующим узлам прибора. Цифровые данные, полученные в цикле опроса всех измерительных каналов, поступают из микропроцессора МП2 в микроконвертор МК6, в котором производятся вычисления значений измеряемых величин в соответствии с используемыми математическими моделями измерительных каналов и хранящимися в памяти МК6 индивидуальными значениями параметров этих моделей, а также в соответствии с используемыми алгоритмами автокоррекции погрешностей. Кроме того, в МК6 производится преобразование в цифровой код напряжения, пропорционального току стабилизатора напряжения блока питания БП.

При передаче измерительной информации по геофизическому кабелю используется двоичный код небольшой разрядности (15 информационных разрядов). В связи с этим для обеспечения максимальной эффективности использования этого кода в МК6 производится преобразование вычисленного значения каждой измеряемой величины в двоичный код, передаваемый по кабелю. Код, поступает в микропроцессор МП3, который преобразует его в код фазоразностной модуляции, управляющий работой устройства передачи данных УПД.

Блок питания БП преобразует ток питания, подаваемый по кабелю от геофизического регистратора, в стабилизированное напряжение +5 В на шине питания, а также формирует команду на включение СТИ при увеличении тока в кабеле , примерно, на 120 мА [7].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.