Рефераты. Разработка канала для комплексной скважинной аппаратуры

p align="left"> 2.2 Структурная схема каналов измерения температуры и влажности

Здесь можно выделить два канала: канал измерения влажности и канал измерения температуры.

Первичным преобразователем влажности ППВ является емкостной параметрический датчик. Емкость удобнее всего преобразовывать в период или частоту. Значит, необходим измерительный преобразователь ИП, который бы осуществлял это преобразование. Частоту или период целесообразно преобразовать в цифровой код, для удобства передачи информации. Для этих целей используется АЦП1.

Аналогичную структуру имеет канал измерения температуры. Первичным преобразователем ППТ здесь является термистор. Для его питания необходим источник тока ИТ. При подаче тока на первичный преобразователь ППТ температура преобразуется в напряжение. В свою очередь, напряжение также целесообразно преобразовать в цифровой код. Поэтому необходим второй АЦП.

Для удобства дальнейшей передачи данных, а также для управления АЦП1 и АЦП2 необходим микроконтроллер КНТ, в состав которого входят следующие компоненты:

- микропроцессор МП;

- оперативно запоминающее устройство ОЗУ;

- память программ;

- интерфейс.

Управляющие воздействия от КНТ подаются на АЦП1 и АЦП2. Для передачи данных к каротажной станции используется цифровая магистраль.

Также в состав структуры должен входить блок питания, от которого питались бы все компоненты схемы. Сам блок питается от каротажной станции посредством магистрали питания.

Структурная схема приведена на рис. 2.2.

Структурная схема каналов измерения температуры и влажности

2

2

Рис. 2.2

2.3 Выбор основных узлов

Как уже отмечалось выше, датчик влажности представляет собой емкостной датчик диэлькометрического типа, электрическая емкость которого изменяется при изменении диэлектрической проницаемости исследуемой жидкости.

Измерительный преобразователь емкости в период повторения импульсов представляет собой схему мультивибратора на операционном усилителе с большим коэффициентом усиления.

В качестве АЦП1 для преобразования периода в цифровой код используется таймер-счетчик.

В датчике температуры (ДТ) в качестве первичного преобразователя используется миниатюрный термистор, обладающий высокой чувствительностью и долговременной стабильностью характеристик. Для обеспечения высокой точности измерений применена нелинейная математическая модель функции преобразования термистора, которая используется для вычисления значения измеряемой температуры непосредственно в базовом модуле.

Большой ТКС термисторов определяет большое изменение сопротивления датчика в рабочем диапазоне температур. В связи с этим применение мостовой схемы включения датчика не имеет смысла. Поэтому в цифровых термоизмерительных приборах и системах целесообразно использовать Сигма-Дельта АЦП и ratio-метрическую схему подключения к нему термисторного датчика.

Необходимо отметить, что большое сопротивление термисторов и их большой ТКС практически снимают проблему влияния сопротивлений подключающих датчик проводов. Если термистор имеет сопротивление 2 кОм, то изменение сопротивления проводов на 0,1 Ом приведет к погрешности по температуре порядка 0,002 ?С. В связи с этим нет необходимости использовать какие-либо сложные схемы подключения датчика (3х-4х-проводные).

Анализ структурной схемы показал, что для данной схемы целесообразно использовать микроконвертор, типа АDuC834 фирмы Analog Devices.

Микроконвертор ADuC834 является функционально законченным контроллером интеллектуального датчика, включающим в себя: два аппаратных модуля сигма-дельта АЦП высокого разрешения (24-разрядное и 16-разрядное), 8-разрядное микропроцессорное устройство управления и встроенную Flash-память программ и данных. Это малопотребляющее устройство принимает сигналы низкого уровня непосредственно с первичного преобразователя.

Кроме двух независимых модулей АЦП (основного и дополнительного) в составе устройства имеется датчик температуры и прецизионный программируемый усилитель, что позволяет выполнять прямые измерения малых уровней напряжения. АЦП с встроенным цифровым фильтром предназначены для измерения низкочастотных сигналов в широком динамическом диапазоне, таких, как сигналы с устройств взвешивания, тензометров или сигналы с температурных датчиков. Частота выдачи результатов измерений с выходов АЦП программируется.

Микроконвертор спроектирован для работы с внешним кварцевым резонатором на частоту 32 768 Гц, из которой встроенная система ФАПЧ вырабатывает внутреннюю рабочую частоту 12,58 МГц. Эта частота поступает на программируемый делитель, с выхода которого снимается рабочая тактовая частота вычислительного ядра микропроцессорного устройства. Такая схема организации тактирования позволяет ослабить вредное влияние паразитных высокочастотных токов, протекающих по общей шине и шине питания устройства, на точность аналого-цифровых преобразований. Процессорное ядро представляет собой микроконтроллер с системой команд, совместимой с набором инструкций семейства 8051. Машинный цикл ядра состоит из двенадцати циклов выбранной рабочей тактовой частоты. Микроконвертор имеет 8 кбайт Flash-памяти программ, 640 байт Flash-памяти данных и 256 байт оперативной памяти данных с произвольным доступом.

В состав ADuC834 включены также 12-разрядный ЦАП с выходом напряжения, два источника тока, монитор источника питания. Встроенная цифровая периферия микроконвертора включает в себя сторожевой таймер, счетчик временных интервалов (реального времени), три таймера-счетчика и модули последовательных портов UART и I2C/SPI.

Микроконвертор поддерживает режимы последовательной загрузки и отладки через UART, а также режим эмуляции через одну линию (единственный внешний контакт ЕА/). Устройство питается от однополярного источника с напряжением +3…+5 В. При напряжении источника +3 В потребляемая микроконвертором мощность составляет менее 10 мВт. Конструктивно ADuC834 выпускается в 52-контактном корпусе типоразмера MQFP [8]. Структурная схема микроконвертора приведена на рис. 2.3.

Структурная схема ADuC834

Рис. 2.3

Поскольку в состав микроконвертора уже входят Сигма-Дельта АЦП, источники тока, микропроцессор, таймер-счетчики, ОЗУ, память программ и интерфейс, то применение такого микроконвертора существенно упрощает структуру разрабатываемого канала. Эта упрощенная структура приведена на обобщенной схеме КСА (рис. 2.1). В нее входят следующие элементы: два первичных преобразователя, измерительный преобразователь емкости в период, микроконвертор, блок питания и магистрали.

3 Разработка принципиальной схемы

3.1 Вывод функции преобразования датчика влажности

В качестве первичного преобразователя для измерения влажности нефти используется цилиндрический датчик, состоящий из металлического корпуса, который служит наружным электродом, и коаксиального внутреннего цилиндрического электрода, покрытого слоем прочной и термостойкой пластмассы. Структура датчика схематически приведена на рис. 3.1.

Структура датчика влажности нефти

Рис. 3.1

Необходимо вывести функцию преобразования для данного датчика.

Емкость цилиндрического конденсатора определяется по следующей формуле:

(3.1)

где Ф/м - электрическая постоянная;

- относительная диэлектрическая проницаемость вещества, заполняющего межэлектродное пространство;

Н - высота электродов;

, - диаметры соответственно внутреннего и наружного электродов.

В данном случае имеется две емкости. В первой емкости межэлектродное пространство заполнено пластмассой. Значение ее находится по формуле:

(3.2)

где - относительная диэлектрическая проницаемость пластмассы;

Н=50 мм - высота электродов;

мм - диаметр внутреннего электрода без слоя пластмассы;

мм - диаметр внутреннего электрода со слоем пластмассы.

Емкость второго конденсатора определяется она по формуле:

(3.3)

где мм - диаметр наружного электрода;

- искомая диэлектрическая проницаемость ( для нефти, - воды, - воздуха).

В зависимости от содержания воды в нефти емкость будет изменяться.

Эти два конденсатора соединены последовательно, поэтому окончательное значение емкости определяется по формуле:

(3.4)

Определим значение емкости для чистой воды, чистой нефти и на воздухе.

При чистой нефти:

Ф;

Ф;

Ф.

При чистой воде:

Ф;

Ф;

Ф.

На воздухе:

Ф;

Ф;

Ф.

Таким образом, значение емкости изменяется от 2,6 до 65,5 пФ в зависимости от состава вещества, заполняющего межэлектродное пространство.

3.2 Разработка принципиальной схемы преобразователя емкости в период

Схема преобразователя емкости датчика в период повторения импульсов приведена на рис. 3.2. На рис. 3.3 представлены временные диаграммы, поясняющие работу схемы.

Схема преобразователя емкости датчика в период повторения импульсов

Рис. 3.2

Операционный усилитель с большим коэффициентом усиления выполняет функции схемы сравнения и находится в состоянии насыщения. Значение напряжения на выходе Uвых(t) по модулю равно значению напряжения насыщения Е и может изменять знак в зависимости от соотношения напряжений на входах усилителя. Напряжение U2(t) на неинвертирующем входе усилителя снимается с делителя, выполненного на резисторах R2, R3. Напряжение U1(t) на инвертирующем входе усилителя является выходным напряжением цепочки, образованной емкостью СХ и резистором R1. Напряжение U1(t) изменяется по экспоненте с постоянной времени , стремясь к значению напряжения насыщения Е.

Временные диаграммы

Рис. 3.3

В момент времени, когда U1(Т/2)=U2, схема сравнения переходит в противоположное состояние, т.е. напряжение Uвых меняет знак. Далее процесс циклически повторяется.

Выходное напряжение представляет собой периодическую последовательность двухполярных прямоугольных импульсов (типа «меандр»). Период повторения импульсов пропорционален емкости первичного преобразователя влажности.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.