Задача 9. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершин треугольника.
Данная задача легко решается, если построить физическую или векторную ее модели.
Физическая модель. Для построения физической модели нужно вспомнить положения курса физики: 1) центр тяжести двух материальных точек с одинаковой массой лежит в середине отрезка, соединяющего эти точки, с массой, равной сумме масс этих точек;
2) центр тяжести двух материальных точек с различной массой лежит в точке, делящей отрезок в отношении масс (большей массе соответствует меньший отрезок и, наоборот);
3) Центр тяжести системы точек находится путем нахождения центра тяжести пар точек из этой системы, и при этом он не зависит от того , в каком порядке соединяются эти точки попарно.
Решение. Докажем сначала, что медианы треугольника пересекаются в одной точке. Для этого определим центр тяжести системы вершин треугольника. В вершины треугольника - как материальные точки поместим массы по 1 в каждую. Тогда, по 1) положению центр масс каждой пары вершин находится в середине отрезка с концами в этих вершинах.
Так как 2)середины сторон треугольника - основания медиан, то получаем, что каждая медиана этого треугольника имеет на своих концах массы 1 и 2, считая от вершин треугольника.
3) Пользуясь третьим положением, получим, что точка равновесия каждой медианы имеет массу равную трем. Это говорит о том, что точки равновесия медиан совпадают, то есть медианы пересекаются в одной точке. Используя второе положение, получаем, что данной точкой равновесия каждая медиана делится на два отрезка, которые будут находиться в отношении 2 к 1, считая от вершин треугольника.
Векторная модель. Для доказательства данного утверждения необходимо вспомнить формулу деления отрезка в данном отношении для векторов.
Итак, пусть точка M делит отрезок AB так, что AM=?MB (*), тогда для любой точки О выполнимо следующее векторное соотношение: . . , где ?? - 1.
Чтобы доказать эту формулу, возьмем векторы и . Подставляя эти соотношения в формулу (*), получаем
, иначе . Группируя векторы, получаем выражение . Отсюда
, где ?? - 1.
Решение. Выберем произвольную точку О в качестве общего начала векторов.
На медиане А А возьмем точку G, делящую ее C в отношении 2 : 1, считая от точки А. Тогда на основании формулы деления отрезка в данном отношении будем иметь: и GА?
.А В
Система эвристических приемов Г.Д. Балка имеет в своей основе некоторые методы, рассмотренные выше, такие как введение вспомогательных неизвестных, преобразование задачи в равносильную ей, разбиение задачи на подзадачи (см.[2], стр. 58 - 59). Однако, помимо того, важными для эвристических рассуждений автор считает методы индукции, аналогии, метод рассмотрения предельных случаев, “соображения непрерывности”, метод малых изменений.
Именно эти методы М.Б Балк и Г.Д. Балк практиковали в своей работе в школе еще в 1969 году, считая их базовыми в процессе поиска решения нестандартной задачи. Эти же методы, не включенные в систему эвристических приемов Л.М. Фридмана, подробно будут рассмотрены на примерах решения нестандартных задач в данном пункте.
4.1 Аналогия
В математике зачастую имеют место такие случаи, когда аналогичные, сходные условия приводят к сходным результатам. Чтобы таким положением было возможно воспользоваться, необходимо научиться (хотя бы на небольшом числе упражнений) формулировать математические предложения по аналогии. Но также нельзя забывать, что сравнение не является доказательством и предложения, сформулированные по аналогии, могут оказаться ошибочными.
И хотя предложения, сформулированные по аналогии, могут оказаться ошибочными, все же часто оказывается, что такие предложения истинны.
Но не только для формулировки новых правдоподобных математических фактов полезно привлекать аналогию, поскольку еще более ценно научиться сознательно привлекать аналогию при поиске способа решения трудной задачи.
В основном метод аналогии применим при решении геометрических задач (в том числе задач стереометрии по аналогии с планиметрическими).
Рассмотрим пример геометрической задачи, когда найти способ решения позволяет метод аналогии.
Задача 12. Зная стороны треугольника ABC, вычислить радиус r вневписанной окружности, касающейся стороны BC и продолжений сторон AB и AC.
Данная задача не является стандартной, поэтому сразу трудно определить алгоритм ее решения. Но возможно, что из рассмотрения вспомогательной задачи, сформулированной для исходной по аналогии, нетрудно будет найти способ решения исходной. Аналогичная ей может выглядеть следующим образом:
Зная стороны a, b, c треугольника ABC, вычислить радиус r вписанной окружности.
Решение. 1. Соединим центр О вписанной окружности с вершинами треугольника ABC.
2. S = S + S + S (1)
3. Обозначим площадь треугольника ABC через S, тогда по формуле Герона
S = .
4. S = cr, S = br, S = ar.
5. Из (1) следует, что S = ( c+ b+ a )r = pr, откуда r =, или A
r = .BC
Решение задачи К+1. 1. Соединим центр Овневписанной окружности с вершинами ABC.
2. S = S + S - S (1).
4. S = , S = , S = .
5. Из (1) первого следует, что S = ( c+ b - a )r =( p-a)r, откуда
r= или r= . Задача решена.
На данном примере наглядно показан прием аналогии решения задач, которым можно пользоваться, соблюдая следующие этапы:
a) подбор задачи, аналогичной исходной, т.е. такой, что у нее и исходной задачи сходные условия и сходные заключения. Вспомогательная задача конечно должна быть проще исходной или ее решение должно быть известно;
б) после решения вспомогательной задачи проводятся аналогичные рассуждения для решения исходной задачи.
4.2 Индукция
Первые три случая тривиальны, поскольку первый игрок может вынуть сразу все шары. В следующих трех случаях первый игрок очевидно должен каждым своим ходом уравнивать количество шаров в соответствии с другим ящиком.
4.3 Предельный случай
Часто поиск решения предложенной задачи значительно упрощается, если предварительно решить такую вспомогательную задачу, которая имеет сходное условие с данной задачей, но в которой условие или некоторые данные получаются из условия или из данных исходной задачи путем предельного перехода. Например, некоторые из фигур, о которых говорится в исходной задаче, заменяются их предельными положениями. Иначе:
если в исходной задаче идет речь о секущей к окружности, то вместо нее во вспомогательной задаче следует рассмотреть касательную (предельное положение секущей, когда расстояние ее от центра стремится к радиусу);
если в условии задачи говорится о четырехугольнике, то во вспомогательной задаче можно рассматривать треугольник (предельное положение четырехугольника, когда длина одной из его сторон стремится к нулю).
Важно учитывать то, что для одной и той же задачи можно подобрать различные предельные случаи.
Кроме того, рассмотрение предельного случая полезно также при выяснении правдоподобия того или иного готового результата (ответа к задаче, данной формулы), а также для построения опровержения.
Для иллюстрации метода подходит следующая задача.
Задача 14. В четырехугольнике ABCD две стороны AD и BC не параллельны. Что больше: полусумма этих сторон или отрезок MN, соединяющий середины двух других сторон четырехугольника?
Поиск решения. Важно представить, что будет получено в предельном случае, когда В одна из сторон четырехугольника стянется в одну точку. В данном случае стягивать в точку МN можно либо BC (или AD), либо AB (или CD).
Рассмотрим первый случай, тогда пусть BC стянется в точку B. В предельном положении А D точка N совпадет с серединой К отрезка BD, и MN станет средней линией MK
Bтреугольника ABD, в предельном случае получаем такую задачу: что больше, половина стороны AD треугольника ABD или отрезок M, соединяющий MK (N)середины двух других сторон?
Ответ прост: MK = AD.
Поставим цель - свести к полученному предельному
ADслучаю решение задачи в общем случае.
Решение. Пусть К - середина диагонали BD четырехугольника ABCD. Из ABD имеем MK = AD и MK || AD. Также из BCD имеем KN = BC и KN || BC.
СТак как по условию AD и BC не параллельны, то Вточки M, K, N не могут находиться на одной прямой. Из MKN видно, что MN < MK+KN =
MN= (1/2)(AD+BC).
4.4 “Соображения непрерывности”
В математике часто заключения об истинности или правдоподобии какого-то факта выводятся с помощью соображений непрерывности. Несмотря на то, что для учащихся школы строгое определение непрерывности сложно, наглядное представление о величинах, меняющихся непрерывно с течением времени имеет каждый (например, путь, величина угла и т.д.).
Отправляясь от таких наглядных представлений, можно дать математическое определение того, что значит, какая-то величина U менялась с течением времени непрерывно: это значит, что при любом выборе момента t в течение достаточно малого промежутка времени (t-h, t+h) значения этой величины отличались от ее значения в момент t меньше, чем наперед заданное допустимое отклонение d. Следует иметь ввиду, что допустимое отклонение d задается здесь заранее и может быть выбрано как угодно малым. Утверждается, что при любом таком выборе d можно в зависимости от этого d для каждого момента t подобрать настолько малый промежуток времени (t-h, t+h), чтобы значения величины U в любой момент из этого промежутка отличались от его значения в момент t меньше, чем на d. В конкретных случаях обычно бывает достаточно ясно, можно ли считать, что та или иная величина меняется непрерывно.
При решении задач особенно полезно бывает следующее интуитивно очевидное свойство непрерывно меняющейся величины: если какая-либо величина (например, длина, сумма углов, площадь и т.п.) менялись непрерывно в течение какого-либо отрезка времени и в начальный момент она была меньше постоянной величины а, а в конечный момент больше, чем а, то в какой-то промежуточный момент она была равна а.
Применение данного свойства хорошо иллюстрирует следующий пример.
Задача15. Легко догадаться, что уравнение 2=4х имеет корень х=4. Имеет ли оно еще хотя бы один корень?
Решение. Рассмотрим “поведение ” этой функции на отрезке [ 0; 1].
При х= 0 2- 4х > 0, а при х= 1 2- 4х < 0, поэтому найдется такое промежуточное значение х, что 2- 4х = 0.
Заключение
В работе на основе изучения структуры решения математической задачи был выделен этап поиска решения задачи, который в случае решения нестандартной задачи выполняется, если используется применение эвристических приемов решения задачи.
Такое условие привело к необходимости изучения понятия эвристического метода и систем эвристических приемов решения математических задач Л.М. Фридмана и М.Б. Балка. Изучение и сравнение данных систем потребовало их изложения с приведением примеров математических задач с решениями в роли иллюстраций к особенностям каждой системы.
Литература
1. Балк Г.Д. О применении эвристических приемов в школьном курсе математики // Математика в школе. - 1969. - №5. - С.21-28.
2. Балк М.Б., Балк Г.Д. О привитии школьникам эвристического мышления // Математика в школе. - 1985. - №2. - С.55 - 60.
3. Большая Советская Энциклопедия, 1978. Том 29.
4. Пойа Д. Как решать задачу. - Львов: журнал “Квантор”,1991.
5. Фридман Л.М. Теоретические основы методики обучения математике в школе: Пособие для учителей, методистов и педагогических высших учебных заведений. - М.: Флинта, 1998.
6. Фридман Л.М., Турецкий Е.Н. Как научиться решать задачи: Книга для учащихся старших классов средней школы. - М.: Просвещение, 1989.
7. Пушкин В.Н. Эвристика - наука о творческом мышлении. - М.: Политиздат, 1967.
Страницы: 1, 2, 3