Рефераты. Изучение метода координат в курсе геометрии основной школы

p align="left">В отличии от других школьных учебников по геометрии в учебнике [22] координаты заняли одно из центральных мест. Они вводятся начиная с 8 класса после изучения тем «Четырехугольники» и «Теоремы Пифагора». На изучение темы отводится 19 часов. Сразу, после рассмотрения основных понятии, связанных с введением координат на плоскости, уравнений окружности и прямой, с учащимися изучаются такие вопросы, как пересечение двух окружностей, пересечение прямой и окружности, определение синуса, косинуса и тангенса любого угла от 0° до 180°. Это и есть первые приложения метода координат, с которыми знакомятся учащиеся.

В курсе алгебры, исходя из уравнения y=f(x), где f(x) заданная функция, строили кривую, определяемую этим уравнением, т. е. строили график функции y=f(x) . Таким образом, шли как бы «от алгебры к геометрии». При изучении метода координат в геометрии мы выбираем обратный путь: исходя из геометрических свойств некоторых кривых, выводим их уравнение, т. е. идем как бы «от геометрии к алгебре». В 8 классе по учебнику [22] и в 9 по учебнику [2] рассматривается уравнение прямой и окружности. При этом обращается внимание на общее понятие «уравнение фигуры»: «Уравнением фигуры на плоскости в декартовых координатах называется уравнение с двумя неизвестными х и у, которому удовлетворяют координаты любой точки фигуры. И обратно: любые два числа, удовлетворяющие данному уравнению, являются координатами некоторой точки фигуры»[22]. Уравнение фигуры на плоскости в общем виде можно записывать так: F(х,у)=0, где F(х,у) функция двух переменных х и у.

Учебник [28] реализует авторскую концепцию построения школьного курса геометрии, в нем больше внимания по сравнению с традиционными учебниками уделяется методам решения геометрических задач. Метод координат по данному учебнику является предпоследней темой 9 класса. При его изучении учащиеся знакомятся с декартовыми координатами на плоскости, рассматривают два уравнения «плоских линий: прямой и окружности», которые в дальнейшем будут необходимы при решении задач. В процессе этого отрабатываются некоторые умения, необходимые для решения задач координатным методом. Следует отметить, что в учебнике сравнительно небольшой теоретический материал по данной теме. Так, например, единственной доказанной формулой (причем только для одного случая когда х1?х2 и у1?у2), если не считать уравнений линий, является формула расстояния между точками. В отличие от учебников [22] и [2] формула середины отрезка в теоретическом материале не рассматривается, хотя в практических заданиях присутствует задача «Рассмотрим на координатной прямой точки А(-2,5) и В(4,3). Найти координаты точки М, если М - середина АВ», таким образом учащимся предлагается самим вывести формулу координат середины отрезка, рассматривая данный конкретный случай и используя понятия координат и формулу расстояния между точками.

Автор не предлагает учащимся как такового понятия фигуры, но подробно рассматривает уравнения «плоских линий», которые понадобятся учащимся при решении задач. Это уравнения окружности и прямой.

А после изучения векторов рассматривается параграф «Координатный метод», в котором на примере двух разобранных задач, в одной из которых рассматривается окружность Аполлония, а в другой обращается внимание на выбор системы координат, учащимся предлагается ряд задач, решаемых данным методом. Это довольно сложные задачи, в основном связанные с нахождением геометрического места точек.

Автор данного учебника признает, что «координатный метод является одним их самых универсальных методов», но отмечает, что «метода на все случаи жизни нет».

1.3 Суть метода координат

Немного из истории координатного метода.

В настоящее время уже очень большое число специалистов из разных областей науки имеют представление о прямоугольных декартовых координатах на плоскости, так как эти координаты дают возможность наглядно при помощи графика изобразить зависимость одной величины от другой. Название «декартовы координаты» наводит на ложную мысль о том, что эти координаты были открыты Декартом. В действительности прямоугольные координаты использовались в геометрии еще до нашей эры. Древний математик александрийской школы Аполлоний Пергский (живший в III-II веке до н. э.) уже фактически пользовался прямоугольными координатами. Он определял и изучал с их помощью хорошо известные в то время кривые: параболу, гиперболу и эллипс.

Аполлоний задавал их уравнениями: у2 =рх (парабола)

(гипербола)

(эллипс, где р и q положительны)

Он, конечно, не выписывал уравнения в этой геометрической форме, так как в те времена не существовало еще алгебраической символики, а описывал уравнения, пользуясь геометрическими понятиями; у2 в его терминологии есть площадь квадрата со стороной у; рх - площадь прямоугольника со сторонами р и х и т.д. С этими уравнениями связаны названия кривых. Парабола по-гречески обозначает равенство: квадрат имеет площадь у2 равную площади рх прямоугольника. Гипербола по-гречески обозначает избыток: площадь квадрата у2 превосходит площадь рх прямоугольника. Эллипс по-гречески обозначает недостаток: площадь квадрата меньше площади прямоугольника.

Декарт внес в прямоугольные координаты очень важное усовершенствование, введя правила выбора знаков. Но главное, пользуясь прямоугольными координатами, он построил аналитическую геометрию на плоскости, связав этим геометрию и алгебру. Нужно сказать, однако, что одновременно с Декартом построил аналитическую геометрию и другой французский математик, Ферма.

Значение аналитической геометрии состоит, прежде всего, в том, что она установила тесную связь между геометрией и алгеброй. Эти две ветви математики ко времени Декарта достигли уже высокой степени совершенства. Но развитие их в течение тысячелетий шло независимо друг от друга, и ко времени появления аналитической геометрии между ними намечалась лишь довольно слабая связь.

Координаты позволяют определять с помощью чисел положение любой точки пространства или плоскости. Это дает возможность «шифровать» различного рода фигуры, записывая их при помощи чисел. Соотношения между координатами чаще всего определяет не одну точку, а некоторое множество (совокупность) точек. Например, если отметить все точки, у которых абсцисса равна ординате, т. е. точки, координаты которых удовлетворяют уравнению х=у, то получится прямая линия - биссектрисы первого и третьего координатных углов.

Иногда, вместо «множество точек», говорят «геометрическое место точек». Например, геометрическое место точек, координаты которых удовлетворяют соотношению х=у - это, как было сказано выше, биссектрисы первого и третьего координатного угла. Установление связей между алгеброй, с одной стороны, и геометрией - с другой, было по существу, революцией в математике. Оно восстановило математику как единую науку, в которой нет «китайской стены» между отдельными ее частями.

Суть метода координат

Сущность метода координат как метода решения задач состоит в том, что, задавая фигуры уравнениями и выражая в координатах различные геометрические соотношения, мы можем решать геометрическую задачу средствами алгебры. Обратно, пользуясь координатами, можно истолковывать алгебраические и аналитические соотношения и факты геометрически и таким образом применять геометрию к решению алгебраических задач.

Метод координат - это универсальный метод. Он обеспечивает тесную связь между алгеброй и геометрией, которые, соединяясь, дают «богатые плоды», какие они не могли бы дать, оставаясь разделенными.

В отношении школьного курса геометрии можно сказать, что в некоторых случаях метод координат дает возможность строить доказательства и решать многие задачи более рационально, красиво, чем чисто геометрическими способами. Метод координат связан, правда, с одной геометрической сложностью. Одна и та же задача получает различное аналитическое представление в зависимости от того или иного выбора системы координат. И только достаточный опыт позволяет выбирать систему координат наиболее целесообразно.

Глава 2

Методические основы обучения координатному методу

2.1.Этапы решения задач методом координат

Чтобы решать задачи как алгебраические, так и геометрические методом координат необходимо выполнение 3 этапов:

1) перевод задачи на координатный (аналитический) язык;

2)преобразование аналитического выражения;

3)обратный перевод, т. е. перевод с координатного языка на язык, в терминах которого сформулирована задача.

Для примера рассмотрим алгебраическую и геометрическую задачи и проиллюстрируем выполнение данных 3 этапов при их решении координатным методом.

№1. Сколько решений имеет система уравнений.

Решение:

1 этап: на геометрическом языке в данной задаче требуется найти, сколько точек пересечения имеют фигуры, заданные данными уравнениями. Первое из них является уравнением окружности с центром в начале координат и радиусом, равным 1, а второе -- уравнением параболы.

2 этап: построение окружности и параболы; нахождение точек их пересечения.

3 этап: количество точек пересечения окружности и параболы является ответом на поставленный вопрос.

№2. Найдите множество точек, для каждой из которых расстояния от двух данных точек равны.

Решение:

Обозначим данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ, а началом координат служила точка А Предположим далее, что АВ=а, тогда в выбранной системе координат А(0,0) и В(а,0). Точка М(х,у) принадлежит искомому множеству тогда и только тогда, когда АМ=МВ, или, что то же самое, АМ2=МВ2. Используя формулу расстояния от одной точки координатной плоскости до другой, получаем АМ2=x2+y2, MB2=(x-a)2+y2. Тогда х22=(х-а)2 + у2

Равенство х22=(х-а)2+у2 и является алгебраической моделью ситуации, данной в задаче. На этом заканчивается первый этап ее решения (перевод задачи на координатный язык).

На втором этапе осуществляется преобразование полученного выражения, в результате которого получаем соотношение .

На третьем этапе осуществляется перевод языка уравнения на геометрический язык. Полученное уравнение является уравнением прямой, параллельной оси Оу и отстоящей от точки А на расстояние , т.е. серединного перпендикуляра к отрезку АВ.

2.2 Задачи, обучающие координатному методу

Для разработки методики формирования умения применять координатный метод важно выявить требования, которые предъявляет логическая структура решения задач мышлению решающего. Координатный метод предусматривает наличие у обучающихся умений и навыков, способствующих применению данного метода на практике. Проанализируем решение нескольких задач. В процессе этого анализа выделим умения, являющиеся компонентами умения использовать координатный метод при решении задач. Знание компонентов этого умения позволит осуществить его поэлементное формирование.

Задача №1 . В треугольнике ABC: AC=b, AB=c, ВС=а, BD - медиана. Докажите, что .

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.