сюжет
величины
значения
а)
+
-
б)
в)
г)
д)
е)
Знак "+" обозначает наличие соответствующего компонента в условии, знак "-" - отсутствие. Знак "-" в графе "сюжет" характеризует задачи, в которых требуется подобрать объекты по заданным величинам и (или) значениям. Знак "-" в графе "величины" предполагает выделение системы необходимых исходных величин в условиях лишних или недостающих данных. Комбинации "+", "+", "+" и "-", "-", "-" не рассматриваются как не представляющие интереса.
Кроме того, задачи внутри одного типа могут отличаться и формой задания: таблица, диаграмма, чертёж, краткая запись и т.д. Приведём примеры, соответствующие выделенным типам.
Велосипедист и пешеход вышли из посёлка в одно и то же время и пошли в город по одной и той же дороге. Велосипедист движется со скоростью…км/ч, пешеход - …км/ч. Какое расстояние будет между ними через 1,5 ч?
Из годового отчёта школы известно следующее:
число учащихся в начале учебного года 642
прибыло в течение года 19
переведено в параллельные классы 4
выбыло из школы 9
осталось на повторное обучение 2
закончило школу 78
Сколько учащихся осталось по окончании учебного года?
в) Составить задачу по краткой записи:
Количество
Цена
Стоимость
1
3
На 1 р.20 к. дороже
13 р.20 к.
2
г) Составить задачу по числовому выражению:
)
д) Составить задачу с величинами расстояние, скорость, время.
е) В первом вагоне трамвая ехало a человек, а во втором b человек. На остановке из второго вагона вышло c человек. Какое из выражений показывает, сколько человек осталось во втором вагоне:
а) a + b в) b - c
б) (a + b) - c г) a + (b - c)
Подставь вместо a, b, c разумные значения и реши задачу.
Говоря об обучении действию выбору точности числовых значений, соответствующих смыслу задачи, не имеется в виду формирование понятий и умений, связанных с приближёнными вычислениями. Речь идёт о привлечении внимания учащихся к тому, что любая математическая модель имеет погрешность. При решении задач в жизни редко получают круглые ответы. Поскольку, например, считать массу краски для пола с точностью до грамма неразумно, то необходимо уметь округлять числовые данные в соответствии со смыслом задачи.
Формирование данного действия должно начинаться уже в процессе знакомства учащихся с единицами измерения, что происходит ещё в начальной школе. Целесообразно при изучении всех единиц рассматривать, какие объекты на практике измеряются данной единицей.
Например. При изготовлении этикетки для спичечного коробка следует знать размеры прямоугольника, на который будет наклеиваться этикетка. В каких единицах измерения следует измерять длину и ширину прямоугольника.
При обучении округления результата в соответствии со смыслом задачи могут использоваться задания, требующие округления, но без указания точности округления. Для того, чтобы показать учащимся необходимость округления, можно использовать задачу: "Сколько нужно заплатить за половину буханки хлеба, если целая буханка стоит 6р.75 к.?"
Приведём примеры задач, которые также могут быть использованы для формирования рассматриваемого действия.
Задача 1. Тракторная бригада должна по плану вспахать 620 га земли. Но она сумела выполнить задание на 144%. Сколько гектаров земли вспахала бригада?
Задача 2. Сенохранилище имеет форму прямоугольного параллелепипеда с измерениями 16,6 м, 5,2 м, 4 м. Сколько тонн сена может поместиться в хранилище, если 1 м3 сена имеет массу 54 кг.
При решении задач на практике приходится округлять не только результат, но и исходные числовые данные. Это может происходить, например, при использовании табличных данных, где указана точность более высокая, нежели требуется по смыслу задачи. Средством обучения выбору точности исходных данных могут служить задачи:
а) требующие практических измерений;
б) связанные с чтением и построением графиков;
в) связанные с избыточной точностью числовых данных.
Например,
Задача 1. Найти площадь классной доски.
Задача 2. Тюк сена спрессованный пресс-подборщиком, имеет массу 40 кг и размеры 9040,355 см. Найдите плотность спрессованного сена.
Задача 3. Туристы сначала ехали на автобусе со скоростью …км/ч, а потом на вёсельных лодках со скоростью …км/ч. Всего за 5 ч они проехали 150 км. Сколько времени ехали туристы на автобусе?
В этой задаче требуется самостоятельно вставить вместо точек реальные значения скоростей автобуса и вёсельной лодки. Желательно, чтобы учащиеся не старались подобрать такие значения, которые дают целочисленный ответ, а округлили результат по смыслу.
В процессе решения предложенных и аналогичных задач учащиеся должны усвоить, что выбор точности зависит от цели, с которой решается задача, и от качеств самого измеряемого объекта. При ответах школьники опираются на свои представления о реальных объектах и процессах, описанных в задаче.
Страницы: 1, 2, 3