Рефераты. Методика изучения объемов многогранников в курсе стереометрии

чебник [7] является продолжением и развитием учебника для 7-9 классов того же авторского коллектива. Изложение теоретического материала более строгое, чем на предыдущей ступени обучения. Теоретические тексты кратки и доступны. Система упражнений последовательна, содержит задачи разного уровня сложности, примеры решения наиболее важных задач, причем данные решения наиболее трудных задач потребуются ученикам как опорные, при доказательстве теорем, следствий из теорем и т. д. Имеются дополнительные задания, которые идут после всей главы. Для решения этих задач необходимо знать не только материал изученной главы («Объемы тел»), но и применить знания, умения и навыки, полученные при изучении других тем. В процессе их решения очень хорошо развивается логика, воображение. Другими словами можно сказать, что при решении дополнительных задач у учащихся развиваются три качества: пространственное воображение, практическое понимание и логическое мышление.

На изучение темы «Объемы тел» отводится 19 ч. Входят такие разделы, как: объем прямоугольного параллелепипеда, объемы прямой призмы и цилиндра, объемы наклонной призмы, пирамиды и конуса, объем шара и площадь сферы, объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель - продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов. В курсе стереометрии понятие объема вводится по аналогии с понятием площади плоской фигуры, и формулируются основные свойства объемов. Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства, так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливаются, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усваиваться в процессе решения задач.

Основная теория в начале курса стереометрии изучается с опорой на геометрические тела, что повышает доступность материала, а значит, и результативность обучения.

Учебник И. Ф. Шарыгина [11] реализует авторскую наглядно-эмпирическую концепцию построения школьного курса геометрии. Его характеризует отказ от аксиоматического метода и акцент на использование наглядных методов в процессе построения теории и решения задач. В учебнике нетрадиционно изложены многие необходимые теоретические факты. Их доказательства оригинальны и, что немаловажно, красивы. Учебные тексты написаны хорошим литературным языком.

Теоремы в учебнике нацелены не столько на «прохождение программы», сколько на создание необходимого запаса сведений для решения задач. Например, весьма интересно изложен раздел «Объемы», в котором имеются теоремы, обычно не рассматриваемые в школе. Доказательства этих теорем поучительны сами по себе, а владение ими дает запас фактов и приемов, позволяющих решать довольно трудные задачи.

Система упражнений в учебнике позволяет реализовать идею уровневой дифференциации. Здесь есть задачи, отмеченные звездочкой, предназначенные для углубленной подготовки; специально выделены полезные (П), важные (В) и трудные (Т) задачи.

Учебник И. М. Смирновой [9] для естественнонаучного профиля является одним из нескольких учебных пособий, написанных И. М. Смирновой и В. А. Смирновым. Эти учебники объединяет единая концепция авторского подхода к геометрии как науке и учебному предмету, а их отличия связаны с учебными задачами, которые ставятся в том или ином профиле. Так учебник для естественнонаучного профиля позволяет углубить знания учащихся по геометрии, в нем расширен материал о многогранниках, например, имеются теорема Эйлера, учебные пункты, посвященные правильным, полуправильным, звездчатым многогранникам, многогранникам, вписанным в сферу, описанным около сферы и т. п. Больше внимания в учебнике уделено изучению кривых и поверхностей, рассматриваются аналитические способы задания фигур. Наряду с декартовыми координатами в пространстве используются полярные и сферические координаты.

Учебник [6] написан кратко и просто, в нем реализован аксиоматический подход к построению курса. В теоретической части учебника авторы выделяют основные теоремы, из которых остальные получаются как следствия. Например, в первом параграфе выводится формула объема прямого цилиндра, а затем представление объема интегралом. Но после параграфа идут задачи на объем прямой призмы. Таким образом, ученики сами выводят формулы. В учебнике обращается внимание на практическое применение геометрии, на ее связь с искусством, архитектурой. Авторы представляют геометрию как живую развивающуюся науку, ведущую свою историю от египетских землемеров и геометров Древней Греции. Изложение теоретического материала строгое. Четкая структура, высокая научность, доступность изложения, простота и краткость - отличительные черты этого учебника. Авторы представляют геометрию, как науку, тесно связанную с окружающим миром. Появлению абстрактного понятия предшествует реальная картина, которая аргументирует необходимость этой абстракции.

К каждому параграфу дается набор задач. Среди них выделены основные задачи, то есть обязательные для всех. Именно в задачах заложен принцип развивающего обучения. Большую помощь учащимся окажут предметный указатель и ответы.

По учебнику [6] на изучение темы «Объемы тел и площади их поверхностей» отводится 20 ч. Входят такие параграфы, как: определение объема, представление объема интегралом, объемы некоторых тел - цилиндра (в том числе призмы), конуса (в том числе пирамиды), шара; площадь поверхности, площадь сферы, площадь поверхности цилиндра и конуса.

Основная цель - продолжить ознакомление учеников с геометрическими величинами.

Аппарат для нахождения этих величин взят из курса начал анализа: интегрирование и вычисление пределов. Тонкие вопросы существования этих величин требуют некоторого комментария со стороны учителя. Например, если мы умеем вычислять объем шара, то из каких соображений находится объем любой его части?

Следует заметить, что только в этом разделе теории в учебнике встречаются утверждения, не имеющие достаточно полного обоснования, опирающиеся на наглядно ясные соображения. Например, постулируется, что любое простое тело имеет объем.

В учебнике И. М. Смирновой и др. [10] реализован курс, несколько меньший по объему, чем в обычных классах, он рассчитан на 2 часа в неделю в течение полутора лет. В нем сохранены основные вопросы традиционной программы по стереометрии. При этом устранены излишняя детализация и теоремы, играющие вспомогательную роль.

Гуманитарная направленность курса поддерживается за счет вопросов исторического, философского и мировоззренческого характера, рассмотрения приложений геометрии. При этом курс логически связан, содержит необходимые определения, свойства, теоремы и их доказательства. Большую роль играет наглядность.

После теоретического материала имеются задания для самоконтроля по теории и различные задачи, среди которых выделены важные задачи, используемые при решении других задач. Главы заканчиваются списком задач, с помощью которых можно повторить содержание главы.

Таким образом, в настоящее время действующих учебников по геометрии для 10-11 классов очень много. Каждый авторский коллектив вносит в содержание своих учебников что-то новое, отличающее их от других. Школа и учителя вправе выбирать те из них, которые, по их мнению, дадут оптимальный уровень знаний по геометрии учащимся того или иного класса. В общеобразовательных школах, где нет углубленного изучения отдельных предметов, чаще всего используют учебник [7].

§ 3 Различные подходы к определению объема многогранников

Задача определения объемов тел относится к глубокой древности. Она возникла в связи с практической деятельностью людей. Говоря простым языком, объем - это часть пространства, занимаемая телом. Точнее: объем - некоторая физическая, а именно геометрическая величина, характеризующая то свойство тел, что они трехмерны или занимают часть пространства. С понятием величины мы много раз встречались в физике и в геометрии.

Прежде всего, величины можно измерять, получая при этом именованные числа. Будем считать, что величина, или именованное число, которое ее выражает, - это одно и то же.

Тогда: 1) величина не может принимать отрицательных значений; 2) если тело (или носитель величины) разбито на части, то сумма величин частей равна величине целого. Величины одного рода можно складывать; 3) для двух величин одного рода существует отношение - отвлеченное число, которое не зависит от способа измерения величин [3].

Рассмотрим конкретный пример.

Представим себе два сосуда: один в форме куба, а второй произвольной формы (рис. 1). Пусть оба сосуда доверху наполняются жидкостью. Допустим, выяснилось, что для наполнения первого сосуда понадобилось m кг жидкости, а для наполнения второго сосуда понадобилось n кг жидкости. Естественно считать, что второй сосуд в раз больше первого. Число, указывающее, во сколько раз второй сосуд больше первого, мы будем называть объемом второго сосуда. Первый сосуд является единицей измерения. Из этого определения понятия объема получаются следующие его свойства:

· Во-первых, так как для заполнения каждого сосуда требуется определенное количество жидкости, то каждый сосуд имеет определенный (положительный)объем.

· Во-вторых, для заполнения равных сосудов потребуется одно и то же количество жидкости. Поэтому равные сосуды имеют равные объемы.

· В-третьих, если данный сосуд разделить на две части, то количество жидкости, необходимое для заполнения всего сосуда, состоит из количества жидкости, необходимой для заполнения его частей. Поэтому объем всего сосуда равен сумме объемов его частей [24].

По данному определению для того, чтобы узнать объем сосуда, надо заполнить его жидкостью. В жизни, однако, требуется решать обратную задачу. Требуется узнать количество жидкости, необходимой для заполнения сосуда, не производя самого заполнения. Если бы мы знали объем сосуда, то количество жидкости мы бы получили, умножая объем сосуда на количество жидкости, необходимой для заполнения единицы объема.

Тело мы будем называть простым, если его можно разбить на конечное число тетраэдров, то есть треугольных пирамид. В частности, такие тела как призма, пирамида, вообще выпуклый многогранник, являются простыми.

Рассмотрим другое определение объема многогранников.

Число, характеризующее величину внутренней области многогранника, называется объемом многогранника.

Смежными многогранниками называются такие многогранники, которые имеют одну или несколько общих граней, причем остальные точки каждого из многогранников расположены вне другого (рис. 2).

Условимся рассматривать объем многогранника как величину, обладающую следующими свойствами:

1. Два равных многогранника имеют один и тот же объем, независимо от их расположения в пространстве.

2. Объем многогранника, представляющего собой сумму двух смежных многогранников, равен сумме объемов этих многогранников.

3. Если из двух многогранников первый содержится целиком внутри второго, то объем первого многогранника не превосходит объема второго.

Многогранники, имеющие равные объемы, называются равновеликими [37]. За единицу объема принимается объем куба, ребро которого равно единице длины (мм, см, дм, м и т.п.).

Естественно, такие определения понятия объема многогранников даются на строгом математическом языке. Рассмотрим подходы к определению понятия объемов многогранников в школьных учебниках.

Во всех учебниках объем вводится аналогично площади, с той лишь разницей, что в учебнике [7] определения нет, а в учебниках [8] и [6] они имеются: в учебнике [8] - это положительная величина, а в учебнике [6] - неотрицательная.

Существуют два подхода к определению объема:

1 подход. Понятие объема вводится аксиоматически. Объем - это положительная величина, численное значение которой обладает следующими свойствами:

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.