Рефераты. Методика изучения объемов многогранников в курсе стереометрии

ледствием теоремы, в отличие от [8], является формула объема для усеченной пирамиды. Доказательства в данном учебнике не приведено. В учебнике [7] формулировка формулы приведена, как задача, причем автор сам задачу решает.

Мы рассмотрели основные рекомендации для изучения данной темы, которые описаны в соответствующей литературе. Но есть и другие приемы и методы, которыми практически не пользуются, но они имеют свои преимущества. Далее приведена примерная (авторская) система данных уроков.

Изучение темы «Объемы многогранников» предлагается вести по схеме, отличной от предлагаемой ранее в данной работе.

Дело в том, что объемы тел - тема, вызывающая достаточно большие трудности у учащихся. В этом разделе есть четыре трудных для усвоения теоремы: 1) об объеме прямоугольного параллелепипеда; 2) об объеме пирамиды; 3) об объеме цилиндра; 4) об объеме тела, полученного вращением криволинейной трапеции [21].

Выводы формул для вычисления объема каждого вида многогранника, цилиндра, конуса проводятся разными методами, что вызывает значительные трудности при их воспроизведении.

Предлагаемая мною система изучения этого раздела устраняет недостатки и создает условия для усвоения основной идеи измерения фигур в пространстве: объем фигуры может быть найден с помощью вычисления интеграла от определенным образом заданной функции.

С целью осуществления такого подхода к измерениям пространственных фигур предлагается посвятить несколько уроков обобщению изученного ранее материала об измерении отрезков и плоских фигур (о длинах и площадях) и ввести аналогичным образом измерение пространственных фигур. Рассмотрим их содержание более подробно.

Урок 1

Тема урока: обобщение свойства длин отрезков и площадей плоских фигур.

Цель урока: повторить свойства длин отрезков и площадей фигур, провести необходимые аналогии.

В начале урока необходимо повторить таблицу метрической системы мер длины, площади и объемов. Для этого удобно заготовить такую таблицу заранее (если ее нет в кабинете) и вывесить ее перед учениками (Приложение 4).

Упражнения для повторения свойств площадей фигур:

1. На рис. 11 изображен отрезок АВ. Найдите длину отрезка АВ, считая единицей измерения: а) сторону одной клетки; б) 1 см (отрезок CD); в) отрезок EF.

При решении этой задачи следует акцентировать внимание учащихся на том, что длина одного и того же отрезка может выражаться разными числами в зависимости от выбора единицы измерения. Но если единица измерения уже выбрана, то длина отрезка есть единственное число. При этом длина отрезка всегда положительна.

2. На рис. 12 изображена плоская фигура ABCDEF. Найдите ее площадь, приняв за единицу измерения: а)половину клетки; б) одну клетку; в) треугольник POQ.

При решении этой задачи следует обратить внимание учащихся на то, что площадь плоской фигуры есть число, которое зависит от выбора единицы измерения. Если единица измерения выбрана, то площадь фигуры единственна. Кроме того, площадь фигуры обязательно неотрицательна, какая бы фигура ни была взята в качестве единицы измерения.

Рис. 12

3. Прямоугольник имеет стороны 5 и 4 см. Какова площадь прямоугольника? Какая фигура выбрана за единицу измерения площадей и какова его площадь?

4. Плоская фигура ABCDEFGH состоит из двух прямоугольников ABGH и CDEF, площади которых соответственно 10 и 5 см2. Найдите площадь фигуры ABCDEFGH (рис. 13).

Решая эту задачу, мы пользуемся таким свойством площадей плоских фигур: если плоская фигура разбита на две, общая часть которых есть линия или точка, то площадь всей фигуры равна сумме площадей, ее составляющих.

5. Треугольники ABC и A1B1C1 конгруэнтны. Площадь ABC равна 36 см2. Какова площадь A1B1C1?

Решив этот комплекс задач, можно сделать выводы, сформулировав их как свойства измерения площадей плоских фигур.

Упражнение для закрепления:

1. Докажите, что два треугольника, на которые диагональ делит параллелограмм, имеют равные площади.

2.Основание прямоугольника в два раза больше его высоты. Покажите на рисунке: а) как нужно разрезать этот прямоугольник на две части, чтобы из них можно было составить прямоугольный треугольник; б) как разрезать его на две части, чтобы из них можно было составить равнобедренный треугольник; в) как разрезать его на три части так, чтобы из них можно было составить квадрат. Что можно утверждать о площадях этих фигур (рис. 14, а-в)?

Урок 2

Тема урока: объем тела.

Цель урока: сформулировать основные свойства объемов.

Измерение объемов пространственных фигур должно удовлетворять свойствам, аналогичным свойствам измерения длин отрезков и площадей плоских фигур.

Учитель формирует следующие свойства.

Каждой пространственному тел ставится в соответствие величина (объем тела), причем это соответствие удовлетворяет следующим условиям:

· объем любого тела неотрицателен;

· конгруэнтные тела имеют равные объемы;

· если тело М есть объединение тел М1 и М2, пересечение которых либо содержит только точки или линии поверхностей обоих тел, либо пусто, то объем тела М равен сумме объемов тел М1 и М2;

· объем куба, длина ребра которого равна 1, равен единице.

Упражнения для закрепления свойств объемов пространственных фигур:

1. Прямоугольный параллелепипед ABCDA1B1C1D1, объем которого 18 см3, разделен сечением KLMN на два конгруэнтных тела (рис. 15). Найдите объем каждой части.

2. Из кубов, длины ребер которых равны 1 см, составлена фигура, изображенная на рис. 16. Вычислите ее объем.

4. Прямоугольный параллелепипед ABCDA1B1C1D1 разделен плоскостью АСС1А на две треугольные призмы, объем одной из которых равен 8 см3. Найдите объем параллелепипеда.

Урок 3

Тема урока: интегральная формула для вычисления объема фигуры.

Цель урока: показать построение подынтегральной функции и способ вычисления объемов фигур с помощью интеграла.

В начале урока в ходе решения ряда упражнений следует напомнить учащимся способ вычисления площадей плоских фигур с помощью интеграла: , где f(x) - функция, задающая криволинейную трапецию.

После этого следует сообщить учащимся, что для вычисления объемов пространственных фигур существует аналогичный способ, к изучению которого мы и переходим.

Пусть дана пространственная фигура Ф. Выберем плоскость таким образом, чтобы она не пересекала Ф (рис. 17).

Выберем прямую Ох, перпендикулярную плоскости . Зададим на этой прямой координаты: за начало координат возьмем О - точку пересечения прямой Ох с плоскостью . Положительное направление выбрано в том полупространстве, в котором расположена фигура Ф. Через точку с координатой х на этой прямой проведем плоскость (х), параллельную плоскости . Таким образом можно установить соответствие между плоскостями, параллельными плоскости , и множеством действительных чисел.

Среди плоскостей данного множества есть такие, которые пересекают фигуру Ф. Первая из этих плоскостей имеет координату а, а последняя - b. Таким образом, фигура Ф заключена между плоскостями (a) и (b), другими словами, задана на отрезке [a,b]. Конечно, далеко не всегда фигура задана на отрезке. Она может быть задана на интервале, на дискретном множестве и т. п. Но в курсе геометрии средней школы можно ограничиться рассмотрением фигур, заданных на отрезке.

Упражнения:

1. Дан куб ABCDA1B1C1D1, длина ребра которого равна 3. В качестве плоскости выбрана плоскость ABCD, а в качестве Ох - прямая АА1. Найдите значения a и b и укажите плоскости (a) и (b).

2. Дана пирамида ABCD. В качестве плоскости выбрана плоскость BCD, а в качестве оси Ох - высота АМ пирамиды. Найдите значения a и b и укажите плоскости (a) и (b), если АМ=6.

3. Дан шар радиуса 8 см с центром в точке К. В качестве плоскости выбрана плоскость на расстоянии 10 см от центра шара. Задайте ось Ох, найдите значения a и b и укажите плоскости (a) и (b).

4. Постройте функцию S(x) для шара радиуса 8 см, если плоскость (х) проходит через центр шара.

5. Постройте функцию S(x) для конуса с высотой Н и радиусом основания R, если в качестве плоскости выбрана плоскость, параллельная основанию и проходящая через вершину конуса.

После решения этих упражнений формулируется следующее определение: объемом фигуры Ф называется интеграл от a до b функции S(x): .

Упражнения:

6. Запишите интегральную формулу для вычисления объемов фигур, заданных в упр. 4, 5.

7. Запишите формулу для вычисления объема цилиндра высоты Н и радиуса R, если в качестве плоскости выбрана плоскость основания цилиндра.

8. Запишите формулу для вычисления объема прямоугольного параллелепипеда с измерениями m, p, n (плоскость задайте сами).

Урок 4

Тема урока: интегральная формула для вычисления объема фигуры.

Цель урока: закрепить изученное на предыдущем уроке и провести доказательство обоснованности данного определения объема.

Упражнения:

1. Выведите формулу для вычисления объема призмы с высотой Н и площадью основания S.

Решение. Здесь a=0, b=H, S(x)=0. Следовательно, .

2. Выведите формулу для вычисления объема пирамиды с высотой Н и площадью основания Q (аналогично тому, как это делалось для конуса).

Решение. Выберем в качестве плоскости плоскость, параллельную основанию и проходящую через вершину. Тогда а=0, b=H, . Поэтому S(x)=. Следовательно, .

Так как объемы фигур должны удовлетворять ранее перечисленным свойствам объемов, то надо показать, что при таком определении объема эти свойства выполнены.

Упражнения:

Выпишите интегральные формулы и выведите формулы для вычисления объема:

1. Призмы с высотой Н и площадью основания S.

2. Пирамиды с высотой Н и площадью основания Q.

3. Цилиндра с высотой Н и радиусом основания R.

4. Конуса с высотой Н и радиусом основания R.

5. Шара радиуса R.

После изучения всех формул для нахождения объема тел следует провести проверочную работу в виде теста.

Тест (объем прямоугольного параллелепипеда) [34]

1. Выберите неверное утверждение.

а) За единицу измерения объемов принимается куб, ребро которого равно единице измерения отрезков;

б) тела, имеющие равные объемы, равны;

в) объем прямоугольного параллелепипеда равен произведению трех его измерений;

г) объем куба равен кубу его ребра;

д) объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

2. Найдите объем прямоугольного параллелепипеда, если его длина равна 6 см, ширина - 7 см, а диагональ - 11 см.

а) 252 см3; б) 126 см3; в) 164 см3; г) 462 см3; д) 194 см3.

3. Основанием прямоугольного параллелепипеда служит квадрат, диагональ которого равна 6. Через диагональ основания и противолежащую вершину верхнего основания проведена плоскость под углом 450 к нижнему основанию. Найдите объем параллелепипеда.

а) 108; б) 216; в)27; г)54; д) 81.

4. Стороны основания прямоугольного параллелепипеда равны 5 см и 12 см, диагональ параллелепипеда составляет с плоскостью основания угол 600. найдите объем параллелепипеда.

а) 390 см3; б) 390 см3; в) 780 см3; г) 780 см3; д) 780 см3.

Тест (объем призмы)

1. Сторона основания правильной треугольной призмы равна 2 см, а высота - 5 см. найдите объем призмы.

а) 15 см3; б) 45 см3; в) 10 см3; г)12 см3; д) 18 см3.

2. Выберите неверное утверждение.

а) Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту;

б) объем правильной треугольной призмы вычисляется по формуле , где а - сторона основания, h - высота призмы;

в) объем прямой призмы равен половине произведения площади основания на высоту;

г) объем правильной четырехугольной призмы вычисляется по формуле , где а - сторона основания, h - высота призмы;

д) объем правильной шестиугольной призмы вычисляется по формуле , где а - сторона основания, h - высота призмы.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.