Рефераты. Методика обучения школьников приемам решения текстовых арифметических задач на основе компетентностного подхода

. На каком-либо конкретном занятии учащиеся самостоятельно изучают отдельные параграфы учебника и составляют краткий конспект этого параграфа. Перед ними стоит задача - пересказать или пояснить прочитанное: выделить, обозначить, подвести итог, подчеркнуть, перечислить, произнести.…В итоге учащиеся не только более глубоко понимают изучаемый материал, но и учатся выбирать главное, обосновывать его важность не только для других, но и, самое главное, для себя.

3. Подходит проведение предметной олимпиады, которая включает в себя нестандартные задания, требующие применения учеником именно предметной логики, а не материала из школьного курса.

Рассмотрим предложенную детям задачу: «Вася учится в 11 классе, а Коля - в 7 классе. В каком классе учился Коля, когда Вася был в 6 классе?» При решении данной задачи ученикам важно выделить в её решении два действия: а) нахождение разницы в возрасте между детьми, б) нахождение конечного ответа. Большинство учеников найдут верный ответ, но лишь несколько из них, как показывает опыт, смогут правильно составить краткую запись - наглядное изображение задачи, и именно у этих учеников развито математическое мышление, они смогли интерпретировать текст задачи схематически.

4. В этом виде компетенции можно говорить и о профориентации, именно в школьные годы мы способствуем выбору детьми той сферы, которая им наиболее интересна - это либо гуманитарная сфера, либо сфера точных наук. Некоторые из задач подобного рода требуют не только знания математики и арифметики, но и практической смекалки, умения ориентироваться в конкретной обстановке. Вот некоторые из них.

Задачи из практики работы в швейной мастерской.

· Проем в окне имеет высоту 2 м 26 см и ширину 1 м 48 см. Сколько потребуется ткани шириной 85 см для занавески, закрывающей весь проем окна, если на подшивку одного конца занавески требуется 2 см, на продольный шов по 1 см от полосы и на закрытие стен по краям проема 10 см?

· Окружность груди 96 см для построения чертежа выкройки необходимо найти чему равна четверть полуокружности груди.

Задачи из практики работы с картоном и жестью.

· Каких размеров потребуется лист картона для изготовления коробки без крышки длиной 19 см, шириной 12 см и высотой 3 см?

· Сколько коробок без крышек размером 220 мм Ч 105 мм Ч 35 мм можно сделать из картона размером 100 см Ч 70 см?

Задачи из практики работы в столярной мастерской.

· На каком равном расстоянии друг от друга и от концов лестницы можно расположить 7 ступенек шириной 4 см на лестнице длиной 2 м 68 см?

· Крышка сиденья на табуретке имеет форму квадрата со стороной 34 см 8 мм. Сколько таких сидений можно вырезать из фанеры, имеющей форму квадрата со стороной 1 м 50 см, если на пропил идет 2 мм?

Задачи, связанные с элементарным строительством.

· Сколько погонных метров линолеума шириной 2 м потребуется для покрытия пола длиной 5 м и длиной 8 м?

· Для приготовления 1 кг замазки требуется 200 г олифы и 800 г мела. Сколько потребуется олифы и мела, чтобы приготовить 5 кг замазки?

Задачи из практики работы в саду, огороде, поле.

· У помидор «Грунтовые грибовские» первые плоды созревают на 110 после посева. Когда были посеяны помидоры, если первые зрелые плоды были 20 августа?

· На 1 кв.м. должно быть 12 растений кукурузы. Сколько растений кукурузы должно быть на 1 гектар [1]?

· Миша за 3 часа может вскопать огорода, а его отец за это же время - огорода. Какую часть огорода могут вскопать Миша с отцом за 1 час совместной работы [3]?

2.1.2 Общекультурная компетенция

Говоря об использовании сведений из разных областей знаний, следует иметь ввиду не только использование материала из других наук на уроках математики, но и использование понятий и методов математики на других уроках и в жизни. Многие учителя знают, что ученики, уверенно использующие некоторое умение на одном предмете, далеко не всегда смогут применить его на другой дисциплине. Для преодоления этого барьера нужна специальная работа, в которой учитель помогает ребенку прояснить задачу, выделить предметную составляющую, показать применение известных способов в новой ситуации. Например, при решении текстовых физических задач с помощью систем уравнений дети испытывали трудности по нескольким причинам: «зашумленность» физической ситуации - сложно построить математическую модель процесса, присутствие непривычных символов; непонимание условия задачи, ее особенностей, стратегии ее решения, неспособность применить математический аппарат в новых обозначениях. Существует несколько путей решения этой проблемы.

1. Учитель может сам продемонстрировать некоторые способы работы с символическим текстом на предметных и непредметных материалах, раскрывая смысл, логику, особенности преобразований;

2. Можно организовать групповую или самостоятельную индивидуальную работу с символическим текстом, в которой необходимо переводить текст с обычного языка на математический, с геометрического - на язык векторов, а также переводить модель, заданную одним способом, в иную модель.

Эффективность работы в этом направлении возрастает при кооперации нескольких учителей по поводу одного предметного умения или при использовании методов одной науки в другой. Работа учителей состоит в создании условий для накопления опыта детей и его осмысления. Тренировки умений могут происходить в предметном или межпредметном поле.

Рассмотрим еще несколько способов формирования общекультурной компетенции.

3. Для формирования грамотной, логически верной речи можно использовать составление математического словаря, написание математического диктанта, выполнение заданий, направленных на грамотное написание, произношение и употребление имен числительных, математических терминов. Например, во время устной работы может быть проведена следующая работа: математический диктант, выявляющий умение записывать числа (натуральные, обыкновенные и десятичные дроби);

4. В качестве дополнительного материала может использоваться написание сказок, фантастических историй, рассказов на заданные темы: «Натуральные числа и ноль», «Отрицательные и положительные числа», «Проценты и дроби» и на темы, предложенные детьми.

5. При решении текстовых задач в условии могут быть умышленно пропущены числа. Предлагается выбрать из записанных на доске чисел те, которыми могла быть выражена данная величина (скорость, цена, масса). Кроме того, можно предложить текстовые задачи со скрытой информативной частью. Например: «Известно, что ученик второго класса должен спать 10 часов в сутки. Сколько в этом случае часов он будет бодрствовать?». Таким образом, работая над данной задачей, ребёнок невольно усваивает общепринятые гигиенические нормы.

Задачи со скрытой, неявной информативной частью не сложны в работе и данный прием вполне применим в школе. Важно только при подведении итогов урока акцентировать внимание учеников не только на математических составляющих урока, но и на общекультурных.

6. По уравнению, схеме к задаче составляются различные текстовые задачи, которые могут быть решены при помощи этого уравнения или схемы. Если решение требует большого количества действий, то к условию составляется минимальное количество вопросов, ответив на которые можно ее решить. Ответы на эти вопросы строятся с использованием слов: по сравнению с…, в отличие от…, предположим, вероятно, по-моему…, это имеет отношение к…, я делаю вывод…, я не согласен с…, я предпочитаю…, моя задача состоит в…

2.1.3 Учебно-познавательная компетенция

Познавательный интерес - избирательная направленность личности на предметы и явления окружающей действительности. Эта направленность характеризуется постоянным стремлением к познанию, к новым, более полным и глубоким знаниям. Систематически укрепляясь и развиваясь, познавательный интерес становится основой положительного отношения к учению. Познавательный интерес носит поисковый характер. Под его влиянием у человека постоянно возникают вопросы, ответы на которые он сам постоянно и активно ищет. При этом поисковая деятельность школьника совершается с увлечением, он испытывает эмоциональный подъем, радость от удачи. Познавательный интерес положительно влияет не только на процесс и результат деятельности, но и на протекание психических процессов - мышления, воображения, памяти, внимания, которые под влиянием познавательного интереса приобретают особую активность и направленность. Познавательный интерес - это один из важнейших мотивов обучения школьников. Его действие очень сильно. Под влиянием познавательного интереса учебная работа даже у слабых учеников протекает более продуктивно. Познавательный интерес при правильной педагогической организации деятельности учащихся и систематической и целенаправленной воспитательной деятельности может и должен стать устойчивой чертой личности школьника и оказывает сильное влияние на его развитие. Познавательный интерес выступает перед нами и как сильное средство обучения. Классическая педагогика прошлого утверждала - «смертельный грех учителя - быть скучным». Когда ребенок занимается из-под палки, он доставляет учителю массу хлопот и огорчений, когда же дети занимаются с охотой, то дело идет совсем по-другому. Активизация познавательной деятельности ученика без развития его познавательного интереса не только трудна, но практически и невозможна. Вот почему в процессе обучения необходимо систематически возбуждать, развивать и укреплять познавательный интерес учащихся и как важный мотив учения, и как стойкую черту личности, и как мощное средство воспитывающего обучения, повышения его качества.

Особенно эффективно данный вид компетентности развивается при решении нестандартных, занимательных, исторических задач, задач-фокусов, а так же при проблемном способе изложения новой темы: учитель создает такую ситуацию, чтобы проблема опиралась на личный опыт ребенка. Например, при изучении начального геометрического материала (длина окружности, периметр и площадь прямоугольника, объем прямоугольного параллелепипеда) можно дать следующие задачи:

- Задача на нахождение периметра прямоугольника. Например: купец Порфирий заказал кузнецу Даниле сделать чугунную ограду вокруг своей усадьбы, которая имеет форму прямоугольника. Сколько метров ограды надо будет изготовить Даниле, если длина усадьбы 50 метров, а ширина - 20 метров)?

- Задача на координатной плоскости: соединить отрезками точки с заданными координатами, в результате получится фигура.

- Решение уравнения, запись значения корня вместо пропущенной координаты.

Так же в 5-6 классах целесообразно включать мини-исследования на основе изучения геометрического материала (от «плоских» фигур до «объемных»). Учащийся по развертке делает модели многогранников, исследуя простейшие свойства стереометрических фигур, получая начальные геометрические сведения. В качестве домашнего задания в 6 классе можно дать домашнее задание-исследование: «Определение зависимости длины окружности от радиуса». Результатом экспериментальной деятельности с помощью реальных, доступных шестикласснику предметов (нитка, посуда, имеющая форму цилиндра) становится приближенное значение числа р.

Так же одним из способов реализации данной компетенции является проведение проверочных работ в форме теста. Целесообразность данной работы с точки зрения компетентностного подхода заключается в том, что в ходе работы ученики приобретают общеучебные умения и навыки. Причем именно умение решать тесты для детей будет очень полезным в будущем, т.к. им предстоит сдавать единый государственный экзамен в форме теста. Кроме того, решение тестов на уроках позволяет выявить слабые места в оформлении заданий. Важным является то, что чем раньше мы начнём устранять ошибку, тем проще ученику будет перестроиться под новые требования.

2.1.4 Информационная компетенция

Обращение к примерам из жизни дает учителю возможность формировать у учащихся информационную компетенцию.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.