Рефераты. Обобщения при обучении решению математических задач

p align="left">Задачи аналогичны по плану решения. В обеих для решения необходимо составить отношения расстояний к скоростям и приравнять. Общая формула выглядит следующим образом: . Если при решении задач, одна уже была рассмотрена ранее, то другая может быть решена по аналогии.

Б). Подумать, известна ли задача, к которой можно свести решаемую?

Пример 14. Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны. Докажите, что эти отрезки равны [38].

Решение задачи упрощается, если заданная пара взаимно перпендикулярных прямых будет проходить через центр квадрата. Доказав равенство отрезков в этом случае, основная задача легко решается использованием признаков параллельности и определения квадрата. Таким образом задачу можно свести к следующей: Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны и пересекаются в центре квадрата. Докажите, что эти отрезки равны.

В). Если родственная задача неизвестна и свести данную задачу к какой-либо известной задаче не удается, то стоит воспользоваться советом: «Попытайтесь сформулировать задачу иначе». При переформулировании задачи либо пользуются определениями данных в ней математических понятий (заменяют термины их определениями), либо их признаками (точнее сказать, достаточными условиями).

Пример 15. Найти периметр правильного шестиугольника A1A2A3A4A5A6, если A1A4 = 2,24 см [1, №1131].

Для быстрого и более легкого нахождения плана

решения данной задачи, удобно к понятию «правильный

шестиугольник» добавить определяющий признак, что

«в правильном шестиугольнике».

Тогда задача примет вид: Найти периметр правильного шестиугольника

A1A2A3A4A5A6, в котором отрезки, соединяющие его центр с вершинами равны сторонам правильного шестиугольника, если A1A4 = 2,24 см.

Тогда, глядя на рисунок 1, становится ясен план решения задачи.

Г). Так же, составляя план решения задачи, следует задать себе вопрос: «все ли данные задачи использованы?» Выявление неучтенных данных задачи облегчает составление плана ее решения. Возможно, имеются «скрытые» данные.

Пример 16. Найти диагональ прямоугольного параллелепипеда, длина а, ширина b, высота h которого известны [30].

Так может случиться, что ученик, зная теорему Пифагора, найдет диагональ грани: . Далее самостоятельное решение задачи будет для него уже затруднительно, тогда учитель, задав вопрос «все ли данные задачи использованы?», может помочь ученику в отыскании верного пути решения задачи.

Д). Иногда полезно следовать совету «Попытайтесь преобразовать искомые или данные». При этом данные преобразуют так, чтобы они приблизились к искомым.

Пример 17. Постройте треугольник, равновеликий данному четырехугольнику [38].

При отыскании решения данной задачи следует для начала преобразовать четырехугольник до параллелограмма, так как формулы площадей треугольника и параллелограмма сходны между собой.

Е). Если следуя предыдущим советам, вам не удалось составить план решения, то можно воспользоваться таким советом: «попробуйте решить лишь часть задачи», т.е. попробуйте удовлетворить лишь части условий, с тем, чтобы далее искать способ удовлетворить оставшейся части условий задачи. Этот совет можно расширить, развить до совета: «Расчлените задачу на более простые задачи».

72

Пример 18. В треугольнике ABC медианы AA1, BB1, CC1 пресекаются в точке M. Точки A2, B2, C2 являются соответственно серединами отрезков AM, BM, CM. Докажите, что A1B1C1= A2B2C2 [1, №1177].

Данная задача решается с применением центральной симметрии,

которая явно не видна (рис. 2). Тогда стоит разбить задачу на этапы:

1) установить взаиморасположение точек A1, B1, C1 и A2, B2, C2;

2) найти центр симметрии; 3) определить центральную симметрию.

Ж) В составлении плана решения задачи может помочь ответ на вопрос: «Для какого частного случая возможно достаточно быстро решить эту задачу?». Отыскав частный случай, можно воспользоваться решением задачи в найденном частном случае для более общего (но, может быть, не самого общего) случая. Так можно поступить, постепенно обобщая задачу до исходной, решаемой задачи. Совет: «Рассмотрите частные случаи задачной ситуации, решите задачу для какого-нибудь частного случая, примените индуктивные рассуждения».

3). Иногда решение задачи оказывается проще, если сформулировать и решить задачу сначала более общую, а затем с ее помощью решить данную задачу. Совет: «Попробуйте сформулировать и решить более общую задачу».

Эвристико-организационные советы для решения задачи можно оформить в виде таблицы. [20] [Приложение 9]

Таким образом, с помощью индуктивных обобщений при решении математических задач можно вывести новые методы решения задач, перейти от одних методов решения задач к более общим. Так же индуктивные обобщения подходов к решению задачи их систематизация помогают в создании системы советов, полезных в процессе отыскания решения задачи.

2.2 Обобщение как метод решения математических задач

Обобщение как метод решения может осуществляться:

1. Решение задачи «по индукции»;

2. Решение задачи в «общем» виде.

2.2.1 Обобщения «по индукции»

Метод решения задачи «по индукции» основан на полной или теоретической индукции.

Обобщение как метод решения осуществляется по следующей схеме:

1. Выделить частный случай задачи, для которого задача решается легко и решить задачу для этого частного случая;

2. Рассмотреть более общий, но все же частный случай, содержащий первый;

3. Рассмотреть общий случай.

Часто решение задач «по индукции» включает в себя только первый и третий пункты из вышепредложеной схемы.

Пример 19. В четырехугольнике две стороны AD и BC не параллельны. Что больше: полусумма этих сторон или отрезок (MN), соединяющий середины двух других сторон четырехугольника (рис. 3а)? [3]

Рис. 3

1) Выделим для начала частный случай, который можно легко решить. В данном случае будет удобно, если одну из сторон четырехугольника стянуть в точку (рис. 3б). Тогда пусть BC стягивается в точку В. В таком положении точка N совпадает с серединой К отрезка BD, и MN становится средней линией MK треугольника ABD. Таким образом исходная задача сводится к следующей: что больше, половина стороны AD треугольника ABD или отрезок MK, соединяющий середины двух других сторон.

По определению средней линии треугольника ответ очевиден: MK=AD

2) Теперь рассмотрим общий случай (Рис. 3в). Задача будет легко решена, если его свести к уже решенному частному случаю. Пусть K - середина диагонали BD четырехугольника ABCD. Из рассмотренного частного случая имеем: в треугольнике ABD MK=AD и МК|| AD, в треугольнике BCD KN=BC и KN||BC.

Так как по условию AD не параллельно BC, то M, N, K не лежат на одной прямой. Тогда по правилу треугольника, в треугольнике MKN видно, что MN<MK+KN = (AD+BC).

Следовательно, мы доказали, что полусумма сторон AD и BC четырехугольника ABCD больше чем отрезок (MN), соединяющий середины двух других сторон.

Каждый раз при решении общей задачи используется результат решения предыдущей частной задачи. Такой частный случай Д. Пойа называет ведущим [30].

Рассмотрим использование различных частных случаев при решении задач.

Пример 20. Дана окружность радиуса R. Из точки A, лежащей вне окружности и отстоящей от центра O на расстоянии а, проведена секущая. Точки B, C ее пересечения с окружностью соеденены с центром О. Пусть BOA и COA обозначены соответственно через и . Найти tg*tg(рис. 4а).

Так как требуется найти величину tg* tg в зависимости от данных, то есть а и R, то ответ должен быть одним и тем же при любом выборе секущей. Тогда верно, что этот же ответ должен получиться и при случае, когда секущая вырождается в касательную (рис. 4б). В данной задаче в качестве частного случая следует рассмотреть случай, когда проведена не секущая, а касательная.

Обобщение «по индукции» удачно подходит для вывода площадей поверхностей многогранников.

Пример 21. Вывести формулу боковой поверхности правильной n_угольной призмы.

Вначале можно вывести формулу площади боковой поверхности прямой правильной треугольной призмы.

Далее обобщаем задачу до вывода формулы площади боковой поверхности прямой правильной n_угольной призмы.

Иногда при решении задачи необходимо рассмотреть несколько вариантов, исчерпывающих все частные случаи, о чем прямо в задаче не сказано. Тогда метод будет иметь несколько другую схему рассуждений:

1) выделить все варианты частных случаев ситуации, описанной в задаче или создавшейся при ее решении;

2) решить задачу для каждого варианта;

3) объединить решения всех вариантов.

Часто этот метод называют методом исчерпывающих проб. Применение метода возможно при конечном числе вариантов.

Пример 22. Найти все четырехзначные числа, удовлетворяющие условиям: сумма цифр равна 11, само число делится на 11.

Обозначим искомое число: abcd=103*a+102*b+10*c+d.

Запишем условия задачи в систему:

Второе уравнение системы выражает делимость искомого числа на 11. Преобразовав систему, получим уравнение: 2*(a+c)=11*(k+1), причем k , так как разность в левой части второго уравнения не может быть меньше -11 и больше 11 (сумма цифр равна 11).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.