Главная:
Рефераты
На главную
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Рефераты. Организация и содержание элективного курса "Основы теории вероятностей и математической статистики" в классах оборонно-спортивного профиля
о завершению всего материала необходимо провести контроль усвоения изученного материала. Он может быть осуществлен выполнением учениками проекта по изученной теме, выполнением контрольной работы.Создание элективных курсов - важнейшая часть обеспечения введения профильного обучения.
Глава 2. Методика изучения элективного курса «Основы теории вероятностей и математической статистики» в классах оборонно-спортивного профиля
2
.1.
Содержание элективного курса «Основы теории вероятн
о
стей и математической статистики»
Как уже ранее говорилось, в научно методической литературе выделяют три типа элективных курсов: предметные, межпредметные и не входящие в базисный учебный план. Наша задача составить содержание элективного курса, не входящего в базисный учебный план. Для того, чтобы определить содержание элективного курса по теме «Вероятностно-статистические методы в спорте», необходимо выяснить, как и где теория вероятностей и статистика применятся в спорте. 1) Графическое представление результатов измерений. Применяется для повышения наглядности эмпирических распределений.2) Расчет основных статистических характеристик. Графическое представление результатов дает только наглядное представление о том, как варьирует признак в выборочной совокупности. Числовые характеристики дают количественное представление об эмпирических данных и позволяют сравнивать их между собой. 3) Проверка статистических гипотез. Применяется для проверки каких-либо теоретических предположений, связанные с эффективностью мероприятий, направленных на совершение какого-либо процесса. Исследователь выдвигает предположение исходя из анализа конкретного явления, затем справедливость предположений проверяется на основании данных соответствующего эксперимента, условии которого контролируются.4) Корреляционный и регрессионный анализ. Применяется с целью установления наличия и степени связи, например, между спортивным результатом и определенным показателем тренированности, между силой мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее.Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля.
1.
Комбинаторика
. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с повторениями, выбор без учета порядка. Правило суммы, правило произведения.
2.
Вероятность
. Основные понятия теории вероятностей. Операции над событиями. Классический, статистический подход к определению вероятности. Основные правила вычисления вероятностей. Формулы полной вероятности, Бейеса.
3.
Случайные величины
.
Понятие дискретной и непрерывной случайной величины. Закон распределения вероятностей дискретной случайной величины. Вычисление математического ожидания и дисперсии.
4.
Математическая с
татистика
.
Общие сведения. Вариационные ряды и их графические представления. Дискретные и непрерывные ряды. Проверка статистических гипотез. Основы корреляционно-регрессионного анализа.В результате изучения данного элективного курса учащиеся должны овладеть следующими умениями:· рационально решать комбинаторные задачи, применяя формулы;· рационально решать задачи, применяя формулы комбинаторики и основные правила вычисления вероятностей;· вычислять математическое ожидание и дисперсию дискретной случайной величины;· изображать вариационные ряды;· находить эмпирические линии регрессии и уравнение линии регрессии. Также применять на практике полученные знания и умения.
2.2. Основные принципы построения методики изучения элективного курса
Так как изучение теории вероятностей и статистики в школьный курс было введено недавно, то в настоящее время существуют проблемы с реализацией этого материала в школьных учебниках. Также, в связи со специфичностью элективного курса, количество методической литературы тоже невелико.Практически во всей литературе считается, что главным при изучении данной темы должен стать практический опыт учащихся, поэтому обучение желательно начинать с вопросов, в которых требуется найти решение поставленной проблемы на фоне реальной ситуации. В процессе обучения не следует доказывать все теоремы, так как на это тратиться большое количество времени, кроме того, наша задача сформировать профессионально значимы навыки, а умение доказывать теоремы к таким навыкам не относится.Изучение должно начинаться с изучения основ комбинаторики, причем параллельно должна изучаться теория вероятностей, так как комбинаторика используется при подсчете вероятностей. Начинать обучения комбинаторике целесообразно с решения простых комбинаторных задач методом перебора. Операция перебора раскрывает идею комбинирования, служит основой для формирования комбинаторных понятий. Основными комбинаторными понятиями являются: сочетания, перестановки, размещения. На первом этапе сами термины можно не вводить, главное чтобы учащийся осознавал наборы какого типа нужно составить в данной задаче. После того как учащиеся научаться составлять наборы из элементов заданного множества по заданному свойству, появляется следующая задача - подсчет количества возможных наборов. Такие задачи решаются с помощью применения принципа умножения. Хорошей наглядной иллюстрацией правила умножения является дерево возможных вариантов. Данная тема хорошо изложена в учебниках [4] и [27].Далее предлагается перейти к теории вероятностей. Одной из главных задач является формирование понятия случайного события. Сформировать данное понятие удобно на различных примерах из жизни. Также необходимо сформировать у учащихся представления об основных понятиях теории вероятностей, а именно: достоверные события, невозможные, равновероятные. Все эти понятия нужно вводить, опираясь на понятные примеры из жизни.Необходимо развить у учащихся понимание степени случайности различных явлений и событий. Для этого можно использовать эмпирические методы, для того чтобы извлечь очевидные закономерности. Следующим шагом в продолжение вероятностной линии идет введение классического и статистического определения вероятности. Необходимо чтобы учащиеся понимали разницу между этими двумя подходами. Чтобы осознавали, что одно это определение вероятности, а другое - способ вычисления вероятности. Таким образом, можно сделать вывод, что определение классической вероятности не требует, чтобы испытания производились в действительности, определение же статистической вероятности предполагает, что испытания были произведены.После введения классического определения вероятности в учебниках обычно вводиться геометрическая вероятность, но в нашем случае ее можно не рассматривать, так как она не используется для решения задач в области спорта.На следующем этапе изучаем формулу полной вероятности и формулу Бейеса. Важно рассмотреть применения данных формул на различных примерах, для того чтобы сформировать у учащихся умения применять данные формулы к решению задач.Также изучается понятие дискретной случайной величины и непрерывной случайной величины. Правила вычисления основных характеристик этих величин. Важно показать практический смысл этих характеристик. Так как вычисления математического ожидания и дисперсии не вызывает никакой сложности, то затрачивать большое количество времени на эту тему не стоит.На последнем этапе переходим к изучению статистики, используя ранее полученные знания. На этом этапе появляется много новых терминов, здесь учителю можно посоветовать следующее: попросить учащихся завести словари, куда бы они заносили новые понятия и по мере надобности могли бы туда заглядывать, также можно предложить сделать таблицу, аналогичную таблице приведенной в учебнике [17].Статистические исследования являются завершающим этапом изучения элективного курса. Здесь рассматриваются примеры статистических исследований в области спорта, полученные ранее. Изучаются основные методы оценки статистических гипотез, регрессионный анализ. Также учащимся может быть предложено самостоятельно провести несложное статистическое исследование.
2.3. Методика использования
практико-ориентированных
з
а
дач
Для успешного освоения учащимися материала необходимо показать, что получаемые на занятиях по математике знания и умения, им понадобятся в их практической деятельности.Было установлено, что негативное отношение студентов к математике во многом объясняется тем, что они не видят практического применения математических знаний умений [11].Легче всего показать значимость изучения теории вероятности и статистики на сюжетных задачах, сформулированных в виде профессиональных проблемных ситуаций. Для спортсменов это могут быть различные ситуации в разных видах спорта. Задачи должны подбираться таким образом, чтобы для их решения требовались определенные математические умения. Кроме того, математические задачи являются одним из средств формирования профессионально значимых умений. Такие задачи можно найти в учебниках [10], [15]. Так как данные в этих учебниках сильно устарели, учителю можно использовать различные данные из области спорта из [20], также достаточно новые данные можно найти в учебнике [24]. Например, одной из проблемной задач может служить следующая.
И
звестно, что среди 40 участников имеются 10 мастеров спорта. Среди всех участников случайным образом выбрали первую пятерку, найдите вероя
т
ность, что в этой пятерке присутствуют ровно 2 мастера спорта.
Для решения такой задачи необходимы знания в области комбинаторики и теории вероятности.При использовании таких задач достигаются следующая цель: студентам наглядно демонстрируются проблемные ситуации, следовательно, у них появляется заинтересованность в изучении математики.Целесообразно использовать задачи, в которых предлагается недостающие данные получить самостоятельно. Например, для спортсменов такими данными могут служить результаты соревнований или тренировок. Таким образом, при решении задач подразумевающих самостоятельное получение данных, создается предпосылка для развития профессиональных умений проводить опросы, работать со справочной литературой и так далее. Кроме того, решая такие задачи, учащиеся реально видят связь изучаемого ими материала с практикой [11].Среди способов самостоятельного получения исходной информации выделяют следующие.· Использование опубликованной информации (справочная литература, журналы, Интернет и т.д.). Решение таких задач развивает у учеников умение работать со специальной литературой. Также модно предлагать задачи связанные с динамическим прогнозированием: студентам нужно взять опубликованные сведения о развитии некоторого явления (спортивного результата, роста детей, количество детей занимающихся в секциях), на их основе построить математическую модель развития этого явления во времени, спрогнозировать уровень развития на текущий период и сравнить с реальным значением. · Самостоятельное получение данных в результате эксперимента. Данный тип задач рекомендуется для спортсменов, так как они часто сдают различные нормативы, поэтому им не требуется проводить опыты специально.Предлагаемые задачи подходят для аудиторной и для домашней работы, так как сбор данных не отнимает много времени и не отвлекает от решения задачи.Так как нет специализированной литературы, которая бы содержала задачи, удовлетворяющим выше перечисленным требованиям, то учителю придется самостоятельно составлять задачи. Достаточно много интересных задач, которые после переработки можно использовать, находятся в следующих источниках: [18], [6], [16], [3], [23], [1].
2.4. Методика преподавания теории вероятностей и математической статистики в средней школе
Страницы:
1
,
2
, 3,
4
Апрель (48)
Март (20)
Февраль (988)
Январь (720)
Январь (21)
2012 © Все права защищены
При использовании материалов активная
ссылка на источник
обязательна.