Рефераты. Преемственность в обучении математике детского сада и школы

p align="left">В первом классе идет дальнейшее углубление знаний об отношениях между смежными числами натурального ряда, закрепляются навыки установления взаимооднозначного соответствия между элементами двух множеств накладыванием, прикладыванием и сравнением чисел.

В детском саду уделяется внимание развитию специальной терминологии: названиям чисел, действий (прибавления и отнимания), знаков (плюс, минус, равно). В школе углубляется процесс обогащения речи детей специальными терминами. Дети усваивают названия данных и искомых, компонентов действий сложения и вычитания, учатся читать и записывать самые простые выражения и т.д.

Важное значение для изучения школьного курса математики имеет своевременное ознакомление дошкольников с арифметическими задачами и примерами. Выпускники детских садов уже усвоили математическую сущность задачи, понимают значение и содержание вопросов задачи, правильно отвечают на них, выбирают и аргументируют выбор арифметического действия. В детском саду начинается, а в первом классе продолжается усвоение детьми таблицы сложения и вычитания в пределах десяти на основе знаний состава числа из двух меньших. Кроме того, в первом классе дети знакомятся с отдельными случаями сложения и вычитания, когда одно из числовых данных равно нулю.

А.М. Леушина считает, что изучая тему «Десяток», первоклассники углубляют свои знания о геометрических фигурах, и прежде всего о многоугольниках (треугольниках, четырехугольниках и т.д.) и их элементах (стороны, углы, вершины). Начальные знания об этом получены в детском саду. Они уже умеют выделять форму окружающих предметов, используя при этом геометрическую фигуру как эталон. Опираясь на материальные объекты вокруг, модели и изображения фигур, дети сравнивают, сопоставляют фигуры между собой, а это способствует развитию индуктивного и дедуктивного мышления, формирует умения делать простейшие выводы. Особенно важно в этом возрасте -- обеспечение целенаправленного и достаточно полного для этого уровня познания анализа фигуры, на основе которого выделяются существенные признаки и происходит абстрагирование от несущественных [21, 38].

Первоклассники учатся выделять прямые и непрямые углы, чертить отрезки разной длины, изображать геометрические фигуры в тетрадях в клетку. Готовились они к этому еще в детском саду.

Положительно влияют на формирование знаний о числе представления детей о непрерывных величинах, что предусмотрено программой детского сада, а также навыки в измерении условной мерой и такими общепринятыми мерами, как метр, литр, килограмм. В первом классе дети продолжают измерять протяженность, массу, вместимость, объем. Постепенно, начиная с детского сада и продолжая эту работу в школе, детей подводят к пониманию функциональной зависимости между измеряемой величиной, мерой и результатом измерения (количеством мер). Все эти знания расширяют понятие о числе, развивают мышление ребенка, его интересы и способности.

Однако современную школу не удовлетворяет формальное усвоение этих знаний и умений. Дальнейшее обучение в школе обычно зависимо от качества усвоенных знаний, их осознанности, гибкости и прочности. Поэтому современная дошкольная дидактика направлена на отработку путей оптимизации обучения с целью повышения этих качеств. Выпускники дошкольных учреждений должны осознанно, с пониманием сути явлений уметь использовать приобретенные знания и навыки не только в обычной, стереотипной, но и в измененной ситуации, в новых, необычных обстоятельствах (игра, труд) [9,72].

Одно из главных требований начального обучения к математической подготовке заключается в дальнейшем развитии мышления дошкольников. Математика - это глубоко логическая наука. Введение ребенка даже в начальную элементарную математику абсолютно невозможно без достаточного уровня развития логического мышления [25,18].

Психологические исследования Н.Я. Попова, В. И. Стаховская [24], свидетельствуют о возможностях детей в активном развитии аналитико-синтетической деятельности, всех форм мышления. Этого можно добиться на основе научно обоснованной коррекции как содержания, так и методики обучения.

Среди таких качеств Т. В. Кудрявцев [19, 91] выделяет активность, инициативность, любознательность, самостоятельность, способность к самоконтролю и саморегуляции, овладение основными видами учебных действий, готовность сенсомоторного аппарата, формирование наиболее важных навыков и привычек.

Как видно из сравнительного анализа программ детского сада и первого класса, программные требования образовательно-воспитательной работы преемственно связаны между собой. Дошкольные работники должны хорошо знать требования школы, при этом не только объем, содержание знаний, но и их качественные особенности - государственный стандарт: какого характера знания и умения необходимы первокласснику. Вместе с этим очень важно, чтобы учителя школ достаточно четко представляли себе уровень подготовки детей к школе. В таком случае учитель будет знать, на что ему опираться, от чего отталкиваться, начиная работу по программе первого класса.

Преемственность, как подчеркивает А.М. Леушина, заключается совсем не в том, есть ли в «Программе детского сада» понятие «трапеция» или «обратная задача», а в том, умеет ли ребенок анализировать данную фигуру и задачу, выделять в них существенные черты и обобщать их [21,41].

В последние годы педагогика все чаще обращается к проблемам методики обучения математики. Прорабатываются пути усовершенствования преемственности именно в вопросах методики. В исследованиях Н.Я. Поповой, В.И. Стаховской, А.В. Сочневой [24] и других учитываются психологические механизмы формирования учебной деятельности ребенка, а также такие, которые относятся к природе и образованию у него элементарных представлений о размере, количестве, числе.

Новые методики разрабатываются соответственно с возрастными особенностями дошкольников, их потребностью в игре, двигательной активности. Исходя из этого, в методических рекомендациях к работе со старшими дошкольниками и учениками первых классов широко используются дидактические игры, двигательные игры, наглядное моделирование разных количественных отношений, реальные практические действия, например с конкретными множествами, величинами: измерение, создание сериационных рядов и транзитивных отношений. Разработка и экспериментальная проверка методик опираются на данные о психологической диагностике динамики общего интеллектуального развития старших дошкольников, а также на результаты изучения состояния их здоровья, работоспособности и утомляемости.

Обучение детей началам математики строится так, чтобы, прежде всего, на основании действий с конкретными множествами и формирования у детей знаний об общих характеристиках формы, размере и количестве, потом учить их считать, измерять, прибавлять и вычитать.

Весьма ценно в этих методиках то, что дети не просто получают определенную сумму знаний по математике, а и значительно повышают уровень общего умственного развития: приобретают умения и навыки воспринимать и понимать инструкцию воспитателя, использовать ее в процессе работы, выполнять работу качественно и контролировать результаты соответственно образцу. Значительные сдвиги происходят и в характере обобщений, в них все больше начинают отражаться существенные связи и отношения, например при решении арифметических задач. Особый интерес для методики обучения детей математике представляют исследования, выполненные под руководством Н.Я.Поповой, В.И. Стаховской, А.В. Сочневой [24]. Они показали, что в условиях обучения дети дошкольного возраста приобретают умения различать существенные признаки объектов (цвет, форму, размер).

Обучение не только ускоряет переход детей от низших к высшим структурам интеллектуальной деятельности, но, как считают психологи, является необходимым условием их превращения. Новые структуры не просто приходят извне, они вырабатываются в процессе обучения на основе тех, которые сложились раньше по образцам, имеющимся в общественном опыте, усваиваемом детьми. Внешняя стимуляция в этом процессе всегда действует через внутреннюю активность ребенка.

Усвоение программы обеспечивает выпускникам дошкольных учреждений уверенное овладение математикой в школе. В первом классе идет дальнейшее углубление знаний по математике. Преемственность в работе детского сада и школы по математике дает положительный результат в усвоении знаний детьми.

2.2 Показатели готовности детей к изучению математики в первом классе

Все разнообразие форм преемственности в современном обучении детей математике можно систематизировать, выделив условно три типа преемственности.

Первый тип характеризуется дублированием в дошкольной подготовке основного содержания и конкретных заданий программ первого класса школы;

При втором типе подготовка детей к школе, не посещаюших дошкольные учреждения, осуществляется дома, в семье, самими родителями, в этом случае обучение, как правило, имеет стихийный характер, особенно в семьях, где воспитанию детей не уделяется должного внимания, дети при такой подготовке усваивают не систематичные сведения и факты из учебной программы школы, которые часто даются недостаточно квалифицированно и педагогически целесообразно. Характерно, что в связи с объективными обстоятельствами, учетом реальных условий и возможностей именно на такой тип преемственности рассчитано современное обучение в первом классе массовой школы (учебные программы, учебники и т.д.).

Наиболее правильным и перспективным следует считать третий тип преемственности. При использовании его в обучении школьников, в частности математике, используется меньше чем половина учебного материала первого класса. Этот материал дается детям для ознакомления. Учебные задания дошкольникам и ученикам первого класса при изучении одного и того же факта имеют свою специфику. Такое частичное упрощение школьной программы с учетом возрастных особенностей детей, которое осуществляется одновременно работниками дошкольного учреждения и школы, дает возможность достичь наилучших результатов при переходе детей от дошкольного к школьному обучению.

В преемственности на первое место выдвигается проблема обучения и воспитания шестилетних детей. Главное в ней - обеспечение одинаковой, достаточно прочной подготовки детей к школе. До сих пор есть факты очень разной подготовки детей к школе, что обычно усложняет работу учителей первых классов, особенно в начале года. Шестилетние дети обучаются и воспитываются в неодинаковых условиях: часть детей - в детских садах, другая часть - в подготовительных классах школы в соответствии со школьными программами и методиками обучения и, наконец, часть детей готовят к школе сами родители, опираясь на субъективные методики обучения. Чаще всего перед школой начинают форсировать процесс обучения математике, учат детей, в основном устно, считать в пределах 100, 1000 и разным вычислениям, в том числе иногда учат таблицу умножения, пытаются решить сложные арифметические задачи, не уделяя должного внимания формированию знаний о множестве, размерах, пространстве и времени.

Целенаправленная подготовка к школе обеспечивается в двух основных организационных формах:

- в подготовительных группах детского сада;

- подготовительных классах школы.

При этом четко намечается тенденция к стопроцентному охвату детей шестилетнего возраста целенаправленным обучением.

Следует отметить существенные различия в работе подготовительных групп детских садов и подготовительных классов в школе. Контингент подготовительных групп и подготовительных классов несколько различается. В подготовительную группу детей переводят из старших групп детского сада, а в подготовительные классы зачисляются дети, не посещавшие дошкольных учреждений и ранее не учившихся. Поэтому программы подготовительных групп и классов не могут быть идентичными, естественно, количество занятий в них неодинаковое. В подготовительной группе детского сада проводится одно (два) занятие по математике в неделю продолжительностью 30-35 минут. При этом дети приобретают прочные знания и умения, в основном соответствующие требованиям современного начального обучения.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.