Рефераты. Развитие младших школьников в процессе обучения математике

p align="left">V Проверь, будет ли делиться каждое слагаемое на число 2, и сделай вывод.

(2+4):2=3 (4+4):2=4 (6+2):2=4 (6+8):2=7 (8+10):2=9

Анализируя предложенные частные случаи, дети могут прийти к заключению, что: «если сумма чисел делится на 2, то каждое слагаемое этой суммы делится на 2». Но этот вывод ошибочный, так как его можно опровергнуть: (1+3):2. Здесь сумма делится на 2, каждое слагаемое не делится.

* Задание 90. Используя содержание курса начальной математики, придумайте задания, при выполнении которых ученики могут сделать неверные индуктивные заключения.

Большинство психологов, педагогов и методистов считают, что эмпирическое обобщение, в основе которого лежит действие сравнения, для младших школьников наиболее доступно. Этим, собственно, и обусловлено построение курса математики в начальных классах.

Сравнивая математические объекты или способы действий, ребенок выделяет их внешние общие свойства, которые могут стать содержанием понятия. Тем не менее, ориентир на внешние, доступные для восприятия свойства сравниваемых математических объектов не всегда позволяет раскрыть сущность изучаемого понятия или усвоить общий способ действий. При эмпирическом обобщении учащиеся часто сосредотачиваются на несущественных свойствах объектов и на конкретных ситуациях. Это отрицательно сказывается на формировании понятий и общих способов действий. Например, формируя понятие «больше на», учитель обычно предлагает серию конкретных ситуаций, отличающихся друг от друга лишь числовыми характеристиками. На практике это выглядит так: детям предлагается положить в ряд три красных кружка, под ними положить столько же синих, затем выясняется - как сделать так, чтобы в нижнем ряду кружков стало больше на 2 (добавить 2 кружка). Затем учитель предлагает положить в первый ряд 5 (4,6,7 ...) кружков, во второй ряд на 3 (2,5,4 ...) больше. Предполагается, что в результате выполнения таких заданий у ребенка сформируется понятие «больше на», которое найдет свое выражение в способе действий: «взять столько же и еще ...». Но, как показывает практика, в центре внимания учащихся в этом случае, прежде всего, остаются различные числовые характеристики, а не сам общий способ действия. Действительно, выполнив первое задание, ученик может сделать вывод только о том, как «сделать больше на 2», выполнив следующие задания - «как сделать больше на 3 (на 4, на 5)» и т. д. В итоге, обобщенная словесная формулировка способа действия: «нужно взять столько же и еще» дается учителем, и большинство детей усваивают понятие «больше на» только в результате выполнения однообразных тренировочных упражнений. Поэтому они способны выполнять те или иные рассуждения только в рамках данной конкретной ситуации и на ограниченной области чисел.

В отличие от эмпирического, теоретическое обобщение осуществляется путем анализа данных о каком-либо одном объекте или ситуации с целью выявления существенных внутренних связей. Эти связи сразу фиксируются абстрактно (теоретически - с помощью слова, знаков, схем) и становятся той основой, на которой в дальнейшем выполняются частные (конкретные) действия.

Необходимое условие формирования у младших школьников способности к теоретическому обобщению - направленность обучения на формирование общих способов деятельности. Для выполнения этого условия нужно продумать такие действия с математическими объектами, в результате которых дети смогут сами «открывать» существенные свойства изучаемых понятий и общих способов действий с ними.

Разработка данного вопроса на методическом уровне представляет определенную сложность. В настоящее время - это одна из самых актуальных проблем начального обучения, решение которой связано как с изменением содержания, так и с изменением организации учебной деятельности младших школьников, направленной на его усвоение.

В курс начальной математики (В.В. Давыдов), целью которого является развитие у детей способности к теоретическому обобщению, внесены существенные изменения. Они касаются и его содержания, и способов организации деятельности. Основу теоретических обобщений в этом курсе составляют предметные действия с величинами (длина, объем), а также различные приемы моделирования этих действий с помощью геометрических фигур и символов. Это создает определенные условия для выполнения теоретических обобщений. Рассмотрим конкретную ситуацию, которая связана с формированием понятия «больше на». Учащимся предлагаются две банки. В одну (первую) налита вода, другая (вторая) - пустая. Учитель предлагает найти способ решения следующей проблемы: как сделать так, чтобы во второй банке воды было бы вот на этот стаканчик (показывает стаканчик с водой) больше, чем в первой? В результате обсуждения различных предложений делается вывод: нужно перелить воду из первой банки во вторую, т. е. налить во вторую столько же воды, сколько ее налито в первую банку, и затем вылить во вторую еще стаканчик воды. Созданная ситуация позволяет детям самим найти необходимый способ действия, а учителю сосредоточить внимание на существенном признаке понятия «больше на», т. е. нацелить учеников на овладение общим способом действия: «столько же и еще».

Использование величин для формирования у школьников обобщенных способов действий - один из возможных вариантов построения начального курса математики. Но эту же задачу можно решать, выполняя различные действия и с множествами предметов. Примеры таких ситуаций нашли отражение в статьях Г. Г. Микулиной Микулина Г. Г. Психологические основы усвоения смысла вычитания. Начальная школа, 1982, №9..

Она советует для формирования понятия «больше на» использовать ситуацию с множествами предметов: детям предлагается пачка красных карточек. Нужно сложить пачку из зеленых карточек так, чтобы в ней было вот на столько (показывается пачка синих карточек) больше, чем в пачке красных. Условие: карточки пересчитывать нельзя.

Пользуясь способом установления взаимно-однозначного соответствия, учащиеся выкладывают в зеленой пачке столько же карточек, сколько их в красной, и добавляют к ней еще третью пачку (из синих карточек).

Наряду с эмпирическим и теоретическим обобщениями в курсе математики имеют место обобщения-соглашения. Примерами таких обобщений являются правила умножения на 1 и на 0, справедливые для любого числа. Их обычно сопровождают пояснениями:

«в математике договорились...», «в математике принято считать...».

* Задание 91. Используя содержание курса начальной математики, придумайте ситуации для теоретического и эмпирического обобщения при изучении какого-либо понятия, свойства или способа действия.

3.7. Способы обоснования истинности суждений

Непременным условием развивающего обучения является формирование у учащихся способности обосновывать (доказывать) те суждения, которые они высказывают. В практике эту способность обычно связывают с умением рассуждать, доказывать свою точку зрения.

Суждения бывают единичными: в них что-то утверждается или отрицается относительно одного предмета. Например: «Число 12 -четное; квадрат АВСD не имеет острых углов; уравнение 23-х = 30 не имеет решения (в рамках начальных классов) и т. д.».

Помимо единичных суждений различают суждения частные и общие. В частных что-то утверждается или отрицается относительно некоторой совокупности предметов из данного класса или относительно некоторого подмножества данного множества предметов. Например: «Уравнение х - 7 = 10 решается на основе взаимосвязи между уменьшаемым, вычитаемым и разностью». В этом суждении речь идет об уравнении частного вида, представляющего собой подмножество множества всех уравнений, изучаемых в начальных классах.

В общих суждениях что-то утверждается или отрицается относительно всех предметов данной совокупности. Например:

«В прямоугольнике противоположные стороны равны». Здесь речь идет о любом, т.е. о всех прямоугольниках. Поэтому суждение является общим, хотя в данном предложении слово «всех» отсутствует. Любое уравнение в начальных классах решается на основе взаимосвязи между результатами и компонентами арифметических действий. Это также общее суждение, так как охватывает всевозможные уравнения, встречающиеся в курсе математики начальных классов.

Предложения, выражающие суждения, могут быть различными по форме: утвердительными, отрицательными, условными (например: «если число оканчивается нулем, то оно делится на 10»).

Как известно, в математике все предложения, за исключением исходных, как правило, доказываются дедуктивно. Суть дедуктивных рассуждений сводится к тому, что на основе некоторого общего суждения о предметах данного класса и некоторого единичного суждения о данном объекте высказывается новое единичное суждение о том же объекте. Общее суждение принято называть общей посылкой, первое единичное суждение - частной посылкой, новое единичное суждение - заключением. Пусть, например, требуется решить уравнение: 7*x=14. Для нахождения неизвестного множителя используется правило: «Если значение произведения разделить на один множитель (известный), то получим другой (значение неизвестного множителя)».

Это правило (общее суждение) - общая посылка. В данном уравнении произведение равно 14, известный множитель 7. Это частная посылка.

Заключение: «нужно 14 разделить на 7, получим 2». Особенность дедуктивных рассуждений в начальных классах заключается в том, что они применяются в неявном виде, т. е. общая и частные посылки в большинстве случаев опускаются (не проговариваются), ученики сразу приступают к действию, которое соответствует заключению.

Поэтому, собственно, и создается впечатление, что дедуктивные рассуждения отсутствуют в курсе математики начальных классов.

Для сознательного выполнения дедуктивных умозаключений необходима большая подготовительная работа, направленная на усвоение вывода, закономерности, свойства в общем виде, связанная с развитием математической речи учащихся. Например, довольно длительная работа по усвоению принципа построения натурального ряда чисел позволяет учащимся овладеть правилом:

«Если к любому числу прибавить 1, то получим следующее за ним число; если из любого числа вычтем 1, то получим предшествующее ему число».

Составляя таблицы П+1 и П - 1, ученик фактически пользуется этим правилом как общей посылкой, выполняя тем самым дедуктивные рассуждения. Примером дедуктивных умозаключений в начальном обучении математике является и такое рассуждение:

«4<5 потому, что 4 при счете называется раньше, чем 5». В данном случае общая посылка: если одно число называется при счете раньше другого, то это число меньше; частная посылка: 4 при счете называют раньше, чем 5; заключение: 4<5.

Дедуктивные рассуждения имеют место в начальном курсе математики и при вычислении значений выражений. В качестве общей посылки выступают правила порядка выполнения действий в выражениях, в качестве частной посылки - конкретное числовое выражение, при нахождении значения которого учащиеся руководствуются правилом порядка выполнения действий.

Анализ школьной практики позволяет сделать вывод о том, что для формирования у школьников умений рассуждать не всегда используются все методические возможности. Например, при выполнении задания:

Сравни выражения, поставив знак <. > или =, чтобы получилась верная запись:

6+3 ... 6+2 6+4 ... 4+6

учащиеся предпочитают заменять рассуждения вычислениями:

«6+2 < 6+3, потому что 8<9». Этим ответ ограничивается, так как суждение «8<9» чаще всего не обосновывается. Хотя при выполнении данного задания они могли бы сравнить слагаемые в суммах и сделать умозаключение о том, какой следует поставить знак, не прибегая при этом к вычислениям. Интересный опыт работы по формированию умения рассуждать отражен в работе В.П.Леховой Лехова В П Дедуктивные рассуждения в курсе математики начальных классов. - Начальная школа, 1988, № 5,с. 28-31.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.