Рефераты. Реализация межпредметных связей на элективных курсах по началам математического анализа в классах гуманитарного профиля

p align="center">1.1.2 Типы элективных курсов

В учебно-методических рекомендациях по проведению элективных курсов авторы выделяют несколько типов элективных курсов.

I. Предметные курсы. Задача таких курсов - углубление и расширение знаний по предметам, входящих в базисный учебный план школы.

В свою очередь, предметные элективные курсы можно разделить на несколько групп:

1. Элективные курсы повышенного уровня, направленные на углубление того или иного учебного предмета, имеющие как тематическое, так и временное согласование с этим учебным предметом. Выбор такого элективного курса позволит изучить выбранный предмет не на профильном, а на углубленном уровне.

2. Элективные спецкурсы, в которых углубленно изучаются отдельные разделы основного курса, входящие в обязательную программу данного предмета.

Примерами таких курсов могут быть: «Введение в математический анализ», «Исследование графиков функций», «Решение задач с параметром», «Производная и ее приложения», «Модуль» и др. Ясно, что в элективных курсах этого типа выбранная тема изучается более глубоко.

3. Элективные спецкурсы, в которых углубленно изучаются отдельные разделы основного курса, не входящие в обязательную программу данного предмета.

Примерами таких курсов могут быть: «Комплексные числа», «Диофантовы уравнения», «Решение простейших дифференциальных уравнений», «Комбинаторика», «Элементы теории вероятностей», «Элементы математической логики», «Элементы теории множеств» и др.

4. Прикладные элективные курсы, цель которых - знакомство учащихся с важнейшими путями и методами применения знаний на практике, развитие интереса учащихся к современной технике и производству. Приведем возможные примеры таких курсов: «Математика и компьютер», «Математические методы в экономике», «Математические открытия» и др.

5. Элективные курсы, посвященные изучению методов познания природы. Примерами таких курсов могут быть: «Измерения величин», «Школьный математический практикум: наблюдение, эксперимент, моделирование», «Как делаются открытия», «Математическое моделирование», «Учимся проектировать на компьютере», «Компьютерное моделирование», «Дифференциальные уравнения как математические модели реальных процессов», «Математические модели и методы в естествознании и технике» и др.

6. Элективные курсы, посвященные истории предмета, как входящего в учебный план школы (история физики, биологии, химии, географических открытий), так и не входящего в него (история астрономии, техники, религии и др.).

7. Элективные курсы, посвященные изучению методов решения задач (математических, физических, химических, биологических и т.д.), составлению и решению задач на основе физического, химического, биологического эксперимента.

II. Межпредметные элективные курсы. Цель таких курсов - интеграция знаний учащихся о природе и обществе. В своей статье Далингер В. А. приводит примеры межпредметных элективных курсов:

1. Математика помогает лингвистике.

2. Оптика конических сечений.

3. Циклоида и ее практические приложения.

4. Компьютер - мой друг.

5. Числа Фибоначчи и природа.

6. Основы исследовательской деятельности.

7. Замечательные кривые в природе.

8. Симметрия в природе и т. д [12].

В профильной школе такие курсы могут выполнять двоякую функцию:

· быть компенсирующим курсом для классов гуманитарного и социально-экономического профилей;

· быть обобщающим курсом для классов естественнонаучного профиля.

III. Элективные курсы по предметам, не входящим в базисный учебный план.

Это курсы, посвященные психологическим, социальным, психологическим культурологическим, искусствоведческим проблемам. Приведем примеры таких курсов: «Введение в современные социальные проблемы», «Психология человека и человеческого общества», «Эффективное поведение в конфликте», «География человеческих перспектив», «Проблемы экологии», «Вопросы менеджмента и маркетинга» и др.

Отметим, что в качестве учебно-методического комплекса по элективным курсам может быть использована научно-популярная литература, математические справочники, сборники задач, а также учебные пособия по факультативным курсам, для кружковой работы. При конструировании элективного курса по математике необходимо учитывать также предыдущий опыт постановки факультативных курсов в средней школе, основные действующие учебники по алгебре и началам анализа, по геометрии, руководствоваться дидактическими принципами отбора содержания курса. Так, например, проблеме постановки и развития факультативных курсов посвящено много работ по теории и методике обучения математике К. В. Амосова, К. А. Нечипоренко, Е. Б. Семёнова, Т. И. Саламатова, И. М. Смирновой, Г. А. Самоновской, В. Д. Степанова, И. И. Позднякова, С. И. Шварцбурда, И. Ф. Шарыгина и др.[21]

1.1.3 Принципы построения системы задач, ориентированных на усвоение содержания элективного курса

Любой элективный курс немыслим без определенного набора задач, соответствующих данному курсу. Задачи используются как очень эффективное средство усвоения школьниками понятий, методов, вообще математических теорий, как наиболее действенное средство развития культуры мышления учащихся, как незаменимое средство привития учащимся умений и навыков в практических применениях математики. Решение задач хорошо служит достижению всех тех целей, которые ставятся перед обучением математике.

Много различных рекомендаций по построению систем (блоков) задач содержится в трудах Э. Г. Готмана, Т. М. Калинкиной, В. И. Мишина, Г. В. Токмазова, П. М. Эрдниева и др. Принципам построения систем задач посвящены работы Л. В. Виноградовой, М. И. Денисовой, В. А. Далингера. О. Б. Епишевой, В. И. Крупича, Е. Ю. Мигановой, Г. И. Саранцева, А. А. Папышева и др.

Обобщая результаты исследований, можем выделить следующие принципы построения системы задач, ориентированных на усвоение содержания элективного курса:

1. Принцип преемственности. Отметим, что задачи содействуют установлению преемственных связей, так как уже в самом содержании задачи имплицитно «заложено» содержание обучения математике (понятия, теоремы, способы деятельности и т. д.). С помощью задач устанавливаются взаимосвязи между различными понятиями, суждениями, между различными темами и предметами и основного курса математики, и элективного курса. Решение задач содействует лучшему пониманию и усвоению теоретического материала, умению учащихся применять на практике общие теории. Все это показывает, что задачам должно придаваться не меньшее значение, чем теоретическим знаниям.

2. Принцип связи теории с практикой. В процессе обучения задачи должны выступать как средство связи теории с практикой, при этом практика может как предшествовать познанию, так и сопутствовать ему и заключать его. Задачи «должны не только заключать изучение теорем, понятий, но и предшествовать, и сопутствовать ему, то есть, выступать в качестве средства усвоения знаний» (Г. И. Саранцев).

З. Принцип полноты, то есть стремление более полно отразить в цепочке задач математические идеи, а также привести примеры, относящиеся к различным отраслям знаний (физика, экономика и т. д.), установить межпредметные связи. Последние, в свою очередь, рассматриваются как средство внесения элементов творчества в мыслительную деятельность каждого учащегося (И. Я. Лернер, М. Н. Скаткин и др.) и являются необходимым условием формирования мировоззрения учащихся.

4. Принцип контрастности ориентирован на то, что уже на начальных этапах обучения при подборе заданий необходимо брать контрастные виды заданий, не допускать повторяемости одних и тех же видов (И. Я. Грудёнов, Ю. М. Колягин, Г. И. Саранцев и др.). При этом задания должны быть как с положительными, так и с отрицательными ответами. Из требования контрастности заданий непосредственно следует необходимость уже на самых первых этапах изучения темы предлагать учащимся нестандартные упражнения, не ограничиваясь однообразными типовыми задачами.

5. Овладение методами научного познания происходит, главным образом, в процессе решения задач. Поэтому система задач должна предусматривать обучение эвристическим приемам. Эвристические приемы являются элементами содержания, однако школьные учебники практически не знакомят с ними учащихся, отсутствуют и задачи, способствующие их формированию. Поэтому на факультативных занятиях в процессе решения задач целесообразно обучать школьников основным эвристическим приемам.

В исследованиях по методике преподавания математики среди эвристических приемов наиболее часто встречаются следующие: аналогия, индукция, прием элементарных задач, прием моделирования и т. д. В литературе также выделяются и другие эвристические приемы: введения вспомогательных элементов и нового неизвестного, достраивания фигуры, обобщения, постановки и выполнения производного задания, равносильного преобразования требования задачи, получения следствий и т. д. При этом одни приемы раскрывают весь процесс решения задачи (иногда его называют способом решения задачи), другие - отдельные его фрагменты (тактические или локальные приёмы). Системы задач, соответствующие каждой теме нашего элективного курса, охватывают практически все типы способов их решения.

6. Принцип формирования исследовательских умений. В методической и научной литературе нет единого и точного определения этого понятия. Под учебными исследованиями будем понимать вид познавательной деятельности, который связан с выполнением учебных заданий, предполагающих самостоятельный творческий поиск учащимися новых знаний. Учебные исследования состоят из нескольких основных этапов: постановка проблемы, выдвижение гипотез, доказательство или опровержение гипотез. Чаще всего в учебном исследовании проблема формулируется самим учителем. Доказательство или опровержение гипотезы обычно сводится к доказательству соответствующей гипотезы математического факта. Основная же эвристическая деятельность учащихся связана с выдвижением гипотез. Создание гипотезы в учебных исследованиях основывается на аналогии, сравнении, исследовании предельных случаев, наблюдении, интуиции, опыте и суждениях.

1.1.4 Некоторые методы обучения на элективных курсах

Методы и формы обучения должны определяться требованиями профилизации обучения, учета индивидуальных и возрастных особенностей учащихся. Ведущее место в обучении на элективном курсе следует отвести методам поискового и исследовательского характера, стимулирующим познавательную активность учащихся. К ним относят:

· проблемный рассказ, когда учитель в ходе изложения учебного материала доказывает, анализирует и обобщает факты, помогая учащимся активизировать свою мыслительную деятельность;

· эвристическая и проблемно-поисковая беседа, когда учитель ставит перед учащимися ряд последовательных и взаимосвязанных между собой вопросов, отвечая на которые они должны высказать некоторые предположения и попытаться их доказать;

· исследовательские лабораторные работы. Они проводятся до изучения теории и ставят учеников перед необходимостью сделать некоторые учебные «открытия»;

· проблемно-поисковые упражнения чаще применяются в том случае, когда ученики могут самостоятельно по заданию учителя выполнять определенные виды действий. В процессе решения практических задач ученики не применяют, а именно усваивают новые элементы знаний, которые потом осмысливают и применяют на практике и др. методы.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.