Рефераты. Системи модульно-розвивального навчання

p align="left">Великий навчально-виховний ефект має підготовча робота учнів до семінару, яка включає опрацювання матеріалу за підручником та додатковою літературою, розв'язування задач раціональним способом, самостійне складання вправ і задач, виготовлення наочних посібників, підготовку повідомлень і виступів, рефератів. На його підготовку необхідно відвести не менше двох тижнів. Учням повідомляється тема семінару, основні питання теорії, по яких буде проведене опитування: вказується номери задач із підручника і додаткової літератури, прийомами розв'язку яких повинні володіти всі учні: подається деякий набір нестандартних вправ в процесі розв'язку яких необхідно проявити елементи творчості. Учням пропонується і самим підібрати задачі та показати на семінарі раціональний спосіб їх розв'язування.

Перелік згаданих матеріалів вивішують у класі (математичному кабінеті), де проводяться заняття. Для обговорення на семінарі, як правило, виносять не більше трьох, чотирьох питань. У списку рекомендованої літератури слід вказати сторінки тексту, які слід прочитати до семінару.

Розподіляються індивідуальні і групові завдання:

- підготувати повідомлення з історії виникнення і розвитку математичних понять;

- показати зв'язок курсу математики з іншими дисциплінами;

- розказати про застосування питань, що розглядаються на семінарі в процесі практики та ін.

До семінару ставляться такі вимоги:

- тема семінару має бути ключовою, тобто такою, щоб у ній поєднувались пізнавальний, виховний і розвивальний аспекти;

- тема семінару повинна викликати в учнів інтерес і бути посильною для самостійного оцінювання;

- необхідно щоб у розпорядження учнів була додаткова література за темою, доступна для них;

- школярі повинні володіти необхідним для участі в семінарі запасом знань і умінь.

При оцінці відповідей учнів враховують знання теорії(поняття, формули, правила та їх обґрунтування), вміння застосувати теорію при розв'язуванні задач. Підготовка до семінару одночасно є підготовкою до заліку(контрольної роботи).

При вивчені теми “Похідна та її застосування” (“Алгебра і початки аналізу”,11(7)клас) Галина Петрівна пропонує такий план семінару:

1. Поняття про похідну.

2. Геометричний зміст похідної.

3. Похідна у фізиці і техніці.

4. Застосування похідної до дослідження функції.

На контрольно-рефлексивному етапі вчитель виявляє результати роботи учнівського колективу і, що найважливіше - кожного окремого учня, а також результати роботи вчителя. Для цього широко використовується самооцінювання учнем знань, норм і цінностей, якими він оволодів під час вивчення теми. На цьому етапі, на думку вчителя, немовби зливаються зусилля учителя і учнів, їхній діалог стає повноцінним і рівноправним. Контрольно-рефлексивний модуль покликаний розвивати творчу рефлексію учнів, оскільки наукові поняття, за словами А.С.Виготського, не засвоюється дитиною, не беруться пам'яттю, а виникають і формуються за допомогою активності його власної думки. Контроль здійснюється у вигляді тестів, тематичних контрольних робіт і заліків. Більшу перевагу вчитель віддає залікам.

Залік проводиться після вивчення великих за обсягом розмірів програми. Під час їх проведення здійснюється комплексна перевірка знань, умінь та навичок учнів. Така форма контролю привчає учнів до систематичної, самостійної роботи під час вивчення всього розділу, підвищує їхню відповідальність за навчання, дає можливість посилити процес узагальнення та систематизації знань та встановити об'єктивність знань кожного учня з даної теми.

У процесі підготовки до заліку( після проведення консультації ) учитель знає стан знань кожного учня. Заліковий модуль стає офіційним підтвердженням результатів навчальних досягнень кожного учня та колективу класу в цілому, а тому вимагає чіткості завдань, масовості в одержанні результатів. У випадку незгоди з фактичною оцінкою залік здається повторно.

Однією з основних форм оперативної перевірки знань та вмінь учнів є усне опитування. А тому Галина Петрівна використовує його майже на кожному модулі: у процесі перевірки домашнього завдання , актуалізації знань, фронтального опитування, планового тематичного обліку знань, а також контролю. Зокрема, вдало підібрані і систематично виконані усні вправи з математики сприяють розвитку логічного мислення учнів, підвищенню їх математичної культури, активізації творчої діяльності, а також привчають до зосередженості, розвивають уміння планувати власну діяльність.

Розв'язування учнями усних вправ на уроках практикує по - різному:

1. Учні читають умову задачі з навчального посібника, таблиці, дошки й усно виконують її.

(Алгебра, 7 клас)

Множення многочлена на многочлен

1. Виконати множення:

1) 5 (a + 4);

2) (x + 2y) 12;

3) -7 (x2 + xy) ;

4) (7x2 - 12) (-2) ;

5) 3 (a + b - 2c) ;

6) (c + d - t2) t;

7) xy (x2 - x) ;

8) (x2y - y2x) xy;

9) uv (2u - 3v) ;

10) 10a2b2 (a2b + b) ;

11) x (-2x2 + 7x - 8) ;

12) an2 (9a3n + 18an2) ;

13) (7a2u - 49u2a)a3u8;

14) (-a7b + b5)(-b2a3) .

2. Які одночлени треба вписати на місці пропусків, щоб отримати тотожності?

1. 5b2 (___ - ___) = 20b7 - 35b2;

2. 7ac2 (___ + ___) = 7ac3 + 35ac2;

3. (___ + ___) 9ac3 = 9ac3 + 18a2c3;

4. (7x2 + ___) 5x = ___ + 20x;

5. (___ - 9a2b) 5a = 5a3 - ___;

6. (___ + 8ac2) ___ = 6ac7c10 + 16a2c4;

7. (9a2t - 5at2) ___ = 18a3t7 - ___;

8. (___ - ___) 5a2c3 = 5a2c3 - 125a2c4.

2. Cистема вправ за готовими малюнками.

Тема: Сума кутів трикутника.

Знайти невідомі кути трикутника АВС.

3. Умова задачі сприймається на слух і після її розв'язання учні повідомляють знайдений результат або коментують спосіб його відшукання.

Застосування лекційно-практичної форми навчання Галина Петрівна пропонує у розробці навчального модуля по темі «Площі фігур»(Додаток 1)

При викладанні математики в нашому навчальному закладі крім рівневої диференціації застосовують профільну.

В 1-5 класах - рівнева, а в 6-7 - профільна і рівнева.

Передумовою до здійснення такої диференціації був глибокий аналіз успішності окремих гімназистів. Привертало увагу те, що учні, які були відмінниками в початковій школі та успішно склали вступні іспити і навіть перший і другий рік в гімназії мали відмінні успіхи, поступово знижували свою успішність, хоча психологічні дослідження фіксували в них високий інтелект. Не було відповідності між коефіцієнтом інтелекту і коефіцієнтом самореалізації, більше того між ними була суттєва різниця.

На психолого-педагогічному консиліумі було вирішено, що треба створювати таке освітнє середовище, щоб кожен гімназист міг максимально само-

реалізуватись на властивому для нього рівні і властивому для нього темпі.

Проаналізувавши детально успішність кожного учня і результати психолого-педагогічної діагностики, диференціація при вивченні математики здійснюється за такою схемою: (схема 3)

Слід зауважити, що групи А, В, С у 1-5 класах є динамічні.

Такий підхід по-перше: має позитивний вплив на мотивацію навчання та розвиток особистості, адже кожен учень має можливість працювати у властивому темпі та на відповідному рівні засвоювати навчальний матеріал, в результаті чого підвищується результативність навчання, формуються позитивні мотиви навчання, проходить гуманізація і оптимізація навчального процесу, що створює умови для розвитку творчих здібностей учнів.

А по-друге вчитель працює з майже однорідною групою за темпом навчання, рівнем навченості, научуваності, пізнавальної активності та самоорганізації.

Основними методичними підходами до здійснення диференціації є:

1) Поєднання індивідуальних та колективних методів навчальної роботи. Так як рівнева і профільна диференціація розраховані на індивідуальний підхід до кожного учня, на його знання і врахування вчителем його інтересів, можливостей і здібностей, то при здійсненні індивідуального підходу, педагог спирається на колективні форми роботи, а колективний характер навчання орієнтує на інтереси та можливості кожного учня. Навчальну спрямованість учнів 1-2 класів стимулює застосування блочно-практичної, а учнів 3-7 класів - лекційно-практичної форм навчальних занять.

2) Відкритість, зрозумілість рівня базової підготовки з кожної теми. Так як чітке усвідомлення і розуміння учнями вимог до базових знань - дійовий засіб і мотивації навчання, і нормалізації навчального навантаження багатьох учнів. Знання вимог до знань з даної теми кожного рівня навчальних досягнень учнів, дозволяє учням усвідомити власний резерв у досягненні більш високого рівня, стає певним орієнтиром як для учня, так і для вчителя.

3) Рівнева диференціація здійснюється не за рахунок того, що в даній групі повідомляють менший, а в іншій більший обсяг навчального матеріалу, а і за рахунок того, що пропонують однаковий обсяг навчального матеріалу, згідно програми, доповнюють його: в групі А - розв'язування задач на дослідження, в групі Б - розв'язування задач практичного змісту, в групі С - задачам які моделюють реальні процеси.

4) Орієнтація контролю та оцінювання навчальної підготовки учнів на перевірку досягнення ними рівнів навчальних досягнень.

Результати диференціації за рівнем засвоєння навчального матеріалу:

Використовуючи ці види диференціації, для контролю знань учнів вчитель пропонує завдання різного рівня складності, виставляє відповідні бали за досягнення певного рівня підготовки: початкового, середнього, достатнього, високого. Рівневі диференціальні завдання представлено у додатку 2.

Основою рівневої і профільної диференціації при вивченні математики є насамперед планування. Відомо, що в умовах модульно-розвивального навчання прототипом календарно-тематичного планування є створення граф-схем навчальних курсів.

Граф-схеми навчальних курсів поєднує в собі основні концептуальні положення модульно-розвивальної системи:

1) логічність: нумерація всіх змістових блоків;

2) занурення: побудова навчальних модулів таким чином. щоб вчитель і учні змогли пройти шлях від пізнавальної поінформованості до проблемно-нормативного осмислення, і далі до уявно-творчого оперування та ціннісно-естетичного сприйняття;

3) осягнення: визначення соціально культурного досвіду, який учні не тільки засвоїли, а і повинні осягнути і духовно-пережити як на теоретичному так і на практично-мистецькому рівні;

4) зростання: проходження учнів через шість етапів цілісного модульно-розвивального процесу, який забезпечує для кожного учня психосоціальне зростання.

При викладанні геометрії у восьмому класі вчитель пропонує граф-схему такого зразка (схема 4). У схемі використано умовні позначення:

1 етап - У-М - установчо-мотиваційний;

2 етап - З-П - змістово-пошуковий;

3 етап - К-С - контрольно-смисловий;

4 етап - А-П - адаптивно перетворювальний;

5 етап - С-У - системно-узагальнюючий;

6 етап - К-Р - контрольно-рефлексивний.

1,2,3... - кількість 30-хвилинних міні-модулів.

Україна розпочала складний шлях до євроінтеграції, складовою цього процесу є підписання Болонської угоди що суттєво вплине на розвиток вищої і середньої освіти. Тести мають пряме відношення до Болонського процесу, адже це величезний крок до більш прозорої і чесної системи відбору абітурієнтів. Бланкове тестування багато в чому нова форма оцінювання навчальних досягнень і тому потребує від учнів певної підготовки.

У 10 - 11 класах фізико-математичного профілю Галина Петрівна проводить тестування, що містить тестові завдання трьох рівнів різної форми:

· завдання з вибором однієї правильної відповіді;

· завдання відкритої форми з короткою відповіддю;

· завдання відкритої форми з розгорнутою відповіддю.

Зразки бланкового тестування показано у додатку 2.

На сучасному етапі розвитку освіти в Україні першочергового значення набуває проблема методики розвитку школярів.

Це ставить нові вимоги до організації навчально-пізнавальної діяльності учнів, потребує застосування більш активних форм навчання.

Практика показує, що такими формами є інтерактивні технології. У сучасному суспільному житті ми спостерігаємо дебати партій, політиків, ток-шоу з відомими діячами, презентації фірм, дискусії перед мікрофоном, різні реклами тощо. Елементи таких заходів уплітаються у сучасний урок. Це не є штучним перенесенням модних форм соціального та політичного життя в навчальний процес. Інтерактивні форми на уроках - це веління часу. Новітні підходи до організації навчання роблять навчально-виховний процес різноманітним, цікавим та ефективним.

Під час проведення модулів та позакласних заходів Галина Петрівна використовує такі форми інтерактивних технологій, як презентація, реклама, мікрофон, робота групами - «ажурна пилка», парами, незакінчені речення, спільні проекти, мозковий штурм, рольова гра тощо. Застосування інтерактивних технологій навчання при викладанні математики вчитель пропонує у додатку 3.

Робота з обдарованими дітьми, що бере початок на модулі, значною мірою виходить за його межі і має переважно характер позакласної роботи. Основні види діяльності: гуртки, олімпіади, спецкурси, знайомство й робота з цікавою літературою тощо.

Регулярну роботу зі здібними до математики дітьми викладач починає з 5-6 класу. Головна мета цієї роботи ? зацікавити, привернути увагу до математики всіх потенційно здібних дітей. Галина Петрівна залучає гімназистів до проведення математичних КВК, вечорів, олімпіад, міжнародного конкурсу «Кенгуру» та ін. Вчитель пропонує методичні розробки у додатку 6.

Модель самокорекції процесу засвоєння знань Галина Петрівна розробляє в рамках моніторингових процедур. Учнівський моніторинг націлений на відстеження навчальної діяльності учня, тобто на засвоєння ним знань з постійним корегуванням своїх дій та взаємодією на рівні суб'єкт-суб'єктивних відносин. При цьому:

1)встановлюється періодичність замірів і загальний термін відстеження (супровідного спостереження і оцінювання);

2)визначена схема, де вказані параметри розвитку, критерії оцінки. Така модель спрямована на формування необхідності в самооцінці, підвищенні свого рівня навчання, що сприяє системному, глибокому, більш швидкому та якісному засвоєнню знань.

Лекційно-практична форма є результативною, про що свідчить моніторинг навчальної діяльності учнів (додаток 7).

Здобуття Україною незалежності сприяло створенню в державі широкої мережі Працювати в таких закладах цікаво і одночасно важко. Цікаво, оскільки переважна більшість учнів класу любить математику, працює з бажанням та інтересом. А важко, оскільки до кожного модуля вчителю слід підготувати високого рівня складності оригінальний матеріал, робота з яким захоплює учнів, викликає в них бажання дошукатися істини, знайти раціональний спосіб розв'язування й одержати “красивий” розв'язок.

Висновок

Формування компетентності учня здійснюються не тільки шляхом реалізації відповідного основленого змісту освіти, але й вибором адекватних методів та технологій навчання. Однією з найрезультативніших технологій формування компетентностей учня вважається технологія модульно-розвивального навчання, засобом реалізації якої є лекційно практична форма.

Різні за знаннями, змістом, формами етапи навчального модуля сприяють психосоціальному зростанню особистості, активізуючи її інтелектуальний і творчий потенціал, емоційність та самодостатність пошукової діяльності, та дозволяють здобути такі освітні результати, як уміння працювати в різних галузях знань з інформаційним потоком: уміння висловлювати власні думки; уміння формувати особисту точку зору, власну думку на підставі осмислення різноманітного досвіду, ідей та уявлень; уміння розв'язувати проблеми (задачі); здатність самостійно займатися власною освітою; вміння співпрацювати та працювати в групі.

А.З.Фрейд підкреслював, що життя в цьому світі служить вищій меті, котру і нелегко розглядіти, все ж ймовірно, що вона зводиться до вдосконалення людини. Процес вдосконалення людини не що інше як розвиток продуктивних форм активності у максимально можливих сферах навчання і практичної діяльності і розвиток через активну продуктивну діяльність механізмів творчості.

Активній продуктивній діяльності учнів, розвитку їх творчості сприяє лекційно-практична форма модульно-розвивального навчання про що свідчить досвід Галини Петрівни.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.