Рефераты. Тесты в технологии блочного обучения математике учащихся полной средней школы

Тесты в технологии блочного обучения математике учащихся полной средней школы

2

Федеральное агентство по образованию

Государственное образовательное учреждение
высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра математического анализа и МПМ

Выпускная квалификационная работа

Тесты в технологии блочного обучения математике учащихся полной средней школы

Выполнил:

студент V курса математического факультета

Лаптев Владимир Алексеевич

Научный руководитель:

д.п.н., профессор, зав. кафедрой алгебры, геометрии и ТОМ Вологодского ГПУ
Тестов Владимир Афанасьевич

Научный консультант:

ассистент кафедры математического анализа и МПМ ВятГГУ
Горев Павел Михайлович

Рецензент:

к.п.н., доцент, зав. кафедрой математического анализа и МПМ ВятГГУ

Крутихина Марина Викторовна

Работа допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой М.В. Крутихина

«___»__________2005 г. Декан факультета В.И. Варанкина

Киров

2005

Содержание

  • Введение 3
  • Глава 1. Использование тестов для оценки качества знаний учащихся по математике 6
    • 1.1 Оценка качества знаний учащихся 6
      • 1.2. Использование тестов для оценки качества знаний учащихся по математике 13
  • Глава 2. Использование тестов в технологии блочного обучения математике 24
    • 2.1.Теоретическое обоснование блочной системы обучения 24
      • 2.2. Содержание блочной технологии обучения и использование в ней тестов 32
      • 2.3. Экспериментальное применение тестов в блочном обучении математике на примере темы «Интеграл» 45
  • Заключение 51
  • Приложение 54
Введение

На современном этапе
развития общество предъявляет определённые требования к системе математических знаний, которые международная общественность считает необходимыми для формирования так называемого «человеческого капитала». Элементами общей человеческой культуры являются определённый объём математических знаний, владение характерными для математики методами, знакомство с ее специфическим языком. Помимо этого, все большую актуальность приобретает проблема оценки качества обучения математике.

Одним из важнейших направлений модернизации системы образования является совершенствование контроля и управления качеством образования. Цель государственного контроля качества заключается в обеспечении стабильного соответствия качества образования потребностям человека, общества и государства. Фундаментальной составляющей школьного образования является математическая подготовка учащихся. Актуальность исследования обусловлена, с одной стороны, новыми государственными требованиями, к математической подготовке школьников, сформулированными в стандарте образования, а с другой, сложившейся системой оценивания учебных достижений в каждом образовательном учреждении.

Изменения в сфере образования, произошедшие за последнее время (введение ЕГЭ и др.), привели к противоречию между наличием разработанной теории и методике использования тестов в оценке качества знаний и их эффективным применением в практике преподавания математике.

Сказанное выше позволяет сформулировать цель исследования: изучить теоретические основы тестирования и их реализацию в условиях полной средней школы;

Таким образом, объектом нашего исследования являются тесты, их применение в процессе обучения математике и влияние на качество знаний учащихся, предметом - содержание, методы, виды тестового контроля и реализация их посредством технологии блочного преподавания математики.

В работе проверяется следующая гипотеза исследования: система тестового контроля знаний школьников при реализации в блочной технологии обучения математике может способствовать повышению эффективности математического образования.

Цель исследования и гипотеза потребовали решения системы исследовательских задач:

1. Изучить возможности применения тестов при оценке качества знаний;

2. Разработать методику по использованию тестового контроля качества знаний учащихся при обучении математике;

3. Оценить организационные возможности тестового контроля при блочном обучении математике;

4. Разработать структуру тестов и методику их применения на одной из тем школьного курса математики;

5. Оценить эффективность данной методики в опытной работе.

Практическая значимость выполненного исследования состоит в разработке методики по использованию тестового контроля качества знаний учащихся.

В ходе работы использовались следующие методы исследования:

- изучение и анализ психолого-педагогической, математико-методической литературы по теме исследования;

- опытная работа со студентами первого курса математического факультета Вятского государственного гуманитарного университета;

- наблюдение;

- анализ полученных результатов.

Выпускная квалификационная работа состоит из введения, двух глав, заключения и библиографического списка.

В первой главе изложены основные проблемы измерения качества обучения математике, проанализирована методическая литература, сформулировано определение теста и разработана технология построение тестов.

Во второй главе описана блочная методика обучения математики и место тестов при осуществлении контроля в блочной технологии обучения математике, описана проведённая опытная работа, результаты и основные выводы по проведенному исследованию в ходе выполнения выпускной квалификационной работы.

Глава 1. Использование тестов для оценки качества знаний учащихся по математике

1.1 Оценка качества знаний учащихся

Министерством образования Российской Федерации в 1998 году у
твержден «Обязательный минимум содержания основного общего образования по математике», на основе которого разработаны «Примерная программа по математике для основной школы» и «Требования к математической подготовке выпускников». Основным назначением этих документов в условиях вариативности и многообразия учебных планов, учебников, школьных и авторских программ является сохранение общего ядра математического образования и обеспечение базы для развития системы дифференцированной школы. [6]

Представленное в программе содержание образования фиксирует минимальный объем материала, который должен быть реализован в любом общеобразовательном учреждении независимо от его типа и направления.

Требования к уровню математической подготовки школьников, являющиеся непосредственно разделом программы, определяют необходимый уровень знаний, умений и навыков, которыми должен овладеть в процессе обучения каждый выпускник основной школы [6].

Установленный государственный контроль над качеством обучения математике посредством государственного стандарта определяет обязательный минимум знаний по предмету, описанный в соответствующих программах по математике. Контроль ведется, в основном, на обязательном минимуме, т.е. на недостаточно высоком уровне математической подготовке. Это подтверждают и исследования PISA-2000, которое продемонстрировало несоответствие математической подготовки российских учащихся международным требованиям. [12]

Позиция России по отношению к другим странам представлена в приведённой ниже таблице (таблица 1).

Таблица 1

Результаты 17-ти стран значимо выше результатов России (I группа)

Результаты 7-ми стран статистически не отличаются от результатов России (II группа)

Результаты 6-ти стран значимо ниже результатов России (III группа)

Япония

Корея

Новая Зеландия

Финляндия

Австралия

Канада

Швейцария

Великобритания

Бельгия

Франция

Австрия

Дания

Исландия

Лихтенштейн

Швеция

Ирландия

Норвегия

Чешская республика

США

Германия

Венгрия

Испания

Польша

Латвия

Италия

Португалия

Греция

Люксембург

Мексика

Бразилия

Анализ результатов исследования позволил сделать следующие выводы.

1. Математическая подготовка 15-летних учащихся в основном позволяет им выполнять задания международного теста. В российской основной школе изучаются математические факты и математические методы, необходимые для решения большинства задач, включенных в международные тесты. Некоторые необходимые сведения о пространственных фигурах, возрастных диаграммах населения и графиках кусочных функций учащиеся получают в Х_ХI классах.

2. Невысокие результаты российских учащихся в международных тестированиях объясняются несколькими причинами.

Почти все задачи были предложены в нестандартной для российских ребят формулировке, она значительно отличалась от формулировки учебных заданий, типичных для большинства действующих учебников. А именно, в заданиях международных тестов достаточно многословно описывалась некоторая близкая к реальной ситуация, которая могла включать факты и данные, не являющиеся необходимыми для решения поставленной проблемы. В ряде случаев задача была сформулирована таким образом, что учащиеся не могли отнести ее к какому-либо определенному разделу курса математики, чтобы для ее решения воспользоваться соответствующими теоретическими фактами. Не удивительно, что значительная часть ребят затруднилась составить математическую модель предлагаемой ситуации.

Некоторые задачи требовали либо приближенных методов решения, использование которых не практикуется в российской школе, либо выполнения только простейших вычислений, что зачастую смущало российских 15-летних школьников, которые привыкли к использованию более сложных математических методов. Российские ребята оказались к этому не готовы.

В некоторых случаях требовалось с учетом содержания задания интерпретировать полученное решение и отобрать ответ, отвечающий условию задачи. Невысокие результаты выполнения таких заданий в ряде случаев объясняются отсутствием у учащихся привычки к самоконтролю. В российской школе не обращается особого внимания на анализ полученного ответа при решении учебных заданий, так как в большинстве случаев этого не требуется в условиях искусственной учебной ситуации.

Для успешного выполнения заданий, предложенных в исследовании, а, следовательно, и для успешности во взрослой жизни очень важна установка на обязательное достижение цели -- решение поставленной задачи любыми доступными средствами. Например, при отсутствии знания точного математического метода и соответствующих математических терминов использовать приближенный метод «проб и ошибок» и повседневную лексику. К сожалению, российские учащиеся такой установки не имеют, так как она не считается приемлемой при обучении математике в российской школе.

3. В проведенном исследовании можно выделить относительно небольшой перечень знаний и умений, которые на международном уровне посчитали необходимыми для современного математически грамотного человека. К ним, например, относятся: пространственные представления; умение читать и интерпретировать количественную информацию, представленную в различной форме; работа с формулами; знаковые и числовые последовательности; нахождение периметра и площадей нестандартных фигур; выполнение действий с процентами и др. К сожалению, формированию этих практически ориентированных знаний и умений в российской школе не уделяется должного внимания. Эти же знания и умения проверялись у учащихся XI класса в рамках другого международного исследования (TIMSS) в 1995 г. Результаты российских выпускников старшей школы были подобны результатам, показанным 15-летними учащимися в рамках исследования PISA в 2000 г. [12].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.