На первой стадии закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись, если она была предусмотрена на предыдущем этапе. На второй стадии происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции, обосновывают выбор и порядок их выполнения, вслух же они проговаривают выполнение основных операций, то есть промежуточных вычислений. На третьей стадии происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, то есть здесь происходит свертывание и основных операций. Четвертая стадия характеризуется предельным свертыванием выполнения операций: учащиеся выполняют все операции в свернутом плане предельно быстро, то есть они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.
Названные стадии не имеют четких границ: одна постепенно переходит в другую. В системе Л. В. Занкова [2] формирование навыков проходит три принципиально различных этапа.
Первый этап –осознание основных положений, лежащих в фундаменте выполнения операции, создание алгоритма ее выполнения. На этом обязательно прослеживается, оценивается и создается каждый шаг в рассуждениях детей, устные рассуждения переводятся в запись математическими знаками. Отсюда вытекает характерный признак этого этапа - подробная запись выполнения операции, с которой в данный момент работают ученики. На этом этапе практически не используется прямой путь. Он возникает только при выполнении промежуточных, знакомых детям операций. Результатом этого этапа является выработка алгоритма выполнения операции и его осознание.
Главным направлением второго этапа является формирование правильного выполнения операции. Для достижения этой цели необходимо не только использование выработанного на 1 этапе алгоритма выполнения операции, но, может быть, в еще большей степени, свободная ориентация в ее нюансах, умение предвидеть. К чему приведет то или иное изменение компонентов операции. В силу этого на втором этапе используются оба пути формирования навыков, однако косвенный путь продолжает быть ведущим, прямой же используется в качестве подчиненного. Третий этап формирования навыка нацелен на достижение высокого темпа выполнения операции. Именно на этом этапе на первый план выходит прямой путь формирования навыка. Главная задача учителя–построить работу так, чтобы дети хотели выполнять необходимые вычисления и получали от этого удовольствие.
2. 2. Особенности формирования действия контроля в процессе работы над вычислительными приёмами и навыками.
Условием нормального протекания учебных действий является наличие контроля за их выполнением.
В исследовании Т. А. Матис [39] изучались пути формирования рефлексивного контроля в совместной учебной деятельности младших школьников. Было обнаружено, что контроль начинает формироваться у детей при совместном решении учебных задач. Важным условием формирования названного учебного действия стало превращение детьми анализа предметного содержания в анализ собственных способов действия в данном содержании (т. е. осуществление рефлексии этих способов). Особую роль в таком превращении играли знаково-символические схемы, позволяющие детям совместно планировать свои действия и контролировать их выполнение. Распределяя между собой и выполняя поочередно то планирование, то контроль за ним, учащиеся с помощью этих схем могли удерживать обе цели внутри сложного совместного действия. По мере его овладения происходило свертывание планирования и отпадала необходимость внешнего контроля за ним со стороны другого ученика: наблюдалось слияние планирования и контроля в одном индивидуальном действии– рефлексивном контроле.
Работа Г. П. Максимовой [22] интересна тем, что в ней вопросы формирования учебного действия изучались во взаимосвязи с формированием таких мыслительных действий, как рефлексия, анализ и планирование.
В исследовании К. Н. Поливанова [29] обнаружено, что важным условием формирования полноценного контроля служит переход младших школьников от выполнения одного учебного действия к другому (наиболее благоприятное условие–переход от преобразования материала к моделированию его существенного отношения.
Работы данных авторов раскрывают одно общее положение, высказанное Д. Б. Элькониным: “Есть основания полагать, что формирования контроля от контроля за действиями других к контролю за своими собственными действиями”.
А. В. Захарова [18] отметила, что выполнение действия контроля способствует тому, что учащиеся обращают внимание на содержание собственных действий с точки зрения их соответствия решаемой задаче. Такое отношение школьников к собственным действиям служит существенным условием правильности их построения и изменения.
Г. А. Цукерман выдвинула гипотезу, согласно которой сотрудничество со сверстниками качественно отличается от сотрудничества со взрослыми и так же, как сотрудничество со взрослыми, является необходимым условием психического развития ребенка. Г. А. Цукерман анализировала взаимодействия детей и их особенности с точки зрения их влияния на психическое развитие в процессе генетико-моделирующего эксперимента. Ее исследования продемонстрировали необходимость кооперации со сверстниками для формирования контрольно-оценочных действий ребенка. Чтобы освоить эти действия, ребенок должен встать на позицию взрослого, а это возможно только при кооперации с другим ребенком, сверстником.
В. В. Рубцов на основе экспериментальных исследований заключает, что кооперация со сверстниками и координация точек зрения– основа происхождения интеллектуальных структур ребенка. Р. Я. Гузман считает, что для организации полноценного совместного учебного действия очень важны такие формы учебной работы, как взаимная проверка заданий, взаимные задания групп, учебный конфликт, а также обсуждение участниками способов своего действия.
Работы Ю. А. Полуянова, Т. А. Матис, В. В. Рубцова, Г. А. Цукерман выявили специфическую роль конфликта точек зрения школьников в возникновении их учебных дискуссий, роль самих дискуссий в совместной учебной деятельности учащихся. Они отметили, что ситуация конфликта позиций, требующая диалога и дискуссий, выступает важным звеном формирования у школьников умения выделять и учитывать точку зрения других людей при контроле и оценке своих действий. В соответствии с мнением Д. Б. Эльконина дети прежде всего должны научиться контролировать друг друга и самих себя. Психологи различают два аспекта взаимоконтроля в учебной деятельности по результату и по процессу. Контроль по результату (продукту) осуществляется на основании того, выполнено задание или нет, насколько качественно оно выполнено. Контроль по процессу предполагает выяснение тех операций, способов, действий, с помощью которых получен результат. Взаимоконтроль по процессу вырабатывает умение осуществлять самоконтроль. Согласно Г. Я. Мор [24, 35], организованный на уроке взаимоконтроль и самоконтроль по процессу приводит к концентрации внимания всех учащихся, формирует в практической деятельности каждого ученика умение рассуждать, дает возможность слабым учащимся лучше разобраться в изучаемом материале, дает возможность на каждом уроке осуществлять обратную связь учителя и учеников.
Развитие умственных действий даёт возможность для развития всех структурных элементов учебной деятельности, а следовательно и действия контроля как компонента этой деятельности.
О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны выполняет все операции приводящие к решению.
Умение осознано контролировать выполняемые операции позволяет формировать вычислительные навыки более высокого уровня, чем без наличия этого умения. Выполнение вычислительного приёма –мыслительный процесс, следовательно, овладение вычислительным приёмом и умение осуществлять контроль за его выполнением, должно происходить одновременно в процессе обучения.
Структура действия контроля должна соответствовать предметному содержанию процесса выполнения вычислительных приёмов, поэтому целесообразно обучать учащихся не только общему способу контроля, но и умению переносить этот способ на конкретные виды вычислительных приёмов.
Важными представляются следующие условия формирования действия контроля в процессе работы над вычислительными приёмами и навыками: осознание назначения контроля учащимися; формирование у учащихся контрольных суждений; постановка учителем перед учащимися задачи на контроль;
совместное планирование действий и контроль за их выполнением; использование заданий, направленных на усвоение алгоритмов контролирующих действий учащимися;
критическое отношение учащихся к контролю со стороны других детей, учителя; формирование потребности в действии контроля.
Перечисленные условия формирования действия контроля в процессе работы над вычислительными приёмами и навыками позволят учащимся избежать трудностей в вычислениях, помогут ученикам быть более внимательными в процессе овладения вычислительными приёмами. 2. 3. Выводы по главе
Умение выполнять вычислительный прием – есть умение выполнять систему умственных операций, следовательно, контроль –есть умение осознанно контролировать выполняемые операции. При развитии действия контроля на уроках математики, совершенствуется умение осознанно выполнять вычислительные приемы. И, наоборот, в случае отсутствия действия контроля, сформированность вычислительных приемов и навыков имеет низкий уровень. Следовательно, процесс выполнения вычислительного приема и осознанное его контролирование, должны быть двумя сторонами единого процесса, процесса овладения вычислительными приемами и навыками.
Действие контроля, сформированное при овладении одних вычислительных приемов, естественно будет проявляться и при выполнении других вычислительных приемов, поскольку при их решении ученик использует в новой конкретной ситуации те же умственные операции. Усвоенная система операций, составляющая процесс выполнения вычислительного приема, в дальнейшем служит образцом для самостоятельного овладения вычислительным приемом и в то же время позволяет осуществлять пооперационный контроль.
На первых этапах овладения вычислительным приемом пооперационный контроль осуществляется под руководством учителя. Но при целенаправленном формировании умения контролировать выполняемые действия, пооперационный контроль на последнем этапе формирования вычислительных приемов и навыков переходит в самоконтроль, который помогает устранить появление возможных ошибок и вместе с тем повышает качество овладения вычислительными приемами и навыками.
3. Экспериментальная работа по формированию действия контроля в процессе работы над вычислительными приемами и навыками
3. 1. Диагностика сформированности действия контроля и вычислительных приемов и навыков
На основе проанализированной литературы нами было проведено исследование с целью выявления уровня сформированности действия контроля. Базой исследования была определена школа– гимназия № 25 г. Иркутска, 3”Д”класс. В исследовании принимал участие весь класс, составе 23 учащихся. В ходе исследования были использованы следующие методы: письменный опрос, беседа, срезы знаний, самостоятельная работа. Нами были выделены следующие задачи исследования: 1. изучить сформированность некоторых свойств действия контроля: а) умение выполнять контроль по результату и желание его осуществлять б) умение обнаружить ошибку (свою, товарищей, учителя), объяснять ее появление в) умение обнаружить ошибку в ходе действия и реконструировать способ действия. С целью изучения интереса детей к математике, вычислительным приемам нами был проведен письменный опрос, который включал следующие вопросы: Какие задания тебе нравится выполнять на уроках математики? Любишь ли ты выполнять вычисления? С удовольствием ли ты находишь значения выражений? Какие ошибки чаще всего допускаешь в вычислениях?
Страницы: 1, 2, 3, 4, 5, 6, 7, 8