Одной интересной особенностью интегринов является наличие их разновидностей, содержащих одинаковые в_субъединицы, которые представлены по меньшей мере тремя типами. Однако четко разграничить функции а- и б-субъединиц, считая, что одни из них ответственны за связывание с внеклеточными элементами, а другие - с внутриклеточными, не удается. Так, было показано, что способность интегрина цыпленка к связыванию полностью утрачивается при диссоциации субъединиц и восстанавливается при реконструкции гетеродимера.
Примеры некоторых интегринов
1. Рецепторы для белков внеклеточного матрикса птиц и млекопитающих. Они связываются с гликопротеиновыми компонентами внеклеточного матрикса, в частности с фибронектином, ламинином и витронектином. Связывание с рецепторами в большинстве случаев конкуретно блокируется пептидами, содержащими трипептид RGD. Было показано, что фибронектин опосредует клеточное движение, и ясно, что рецептор фибронектина и его внутриклеточные контакты имеют решающее значение для клеточного морфогенеза.
Гликопротеины тромбоцитов. По и Ша являются гликопротеинами мембран тромбоцитов, гомологичными а- и /3_субъединицам других интегринов. Этот поверхностный рецептор участвует в агрегации тромбоцитов, происходящей при свертывании крови. Тромбоциты не агрегируют до тех пор, пока не произойдет «активация» одним из агонистов - тромбином, коллагеном или адреналином. Процесс активации детально не изучен, но одним из ее результатов является увеличение доступности комплекса на поверхности тромбоцитов, в результате чего он может взаимодействовать с циркулирующими макромолекулярными «адгезивными» белками, в том числе с фибриногеном, фибронектином и фактором фон Виллебранда. Это связывание зависит от кальция. Фибриноген двухвалентен и, вероятно, более важен для связывания тромбоцитов в каскаде агрегации. Плазматический фактор фон Виллебранда является многофункциональным гликопротеином, который обладает сродством не только к активированному интегрину, но и к коллагену. Следовательно, этот белок адгезии способствует прилипанию активированных тромбоцитов к сосудистому субэндотелию, который становится доступным для них при нарушении целостности эндотелиальных клеток после ранения. Фактор фон Виллебранда связывается также с другим рецепторным белком тромбоцитов, глнкопротеином lb.
Лейкоцитарные белки адгезии. Для того чтобы мигрировать к месту инфекции и воспаления, лейкоциты должны вступить во взаимодействие с эндотелиальными клетками сосудов. Идентифицированы три гетеродимерных рецептора, участвующие в адгезии лейкоцитов; все они относятся к семейству интегринов. По-видимому, все три белка имеют одинаковые /3_субъедини-цы. Один из них, LFA_1, связывается со специфическим глнкопротеином клеточной поверхности ICAM4, присутствующим на фибробластах. Это взаимодействие может опосредовать связывание Т-лимфоцитов с фибробластами при воспалении.
Позиционно специфические антигены дрозофилы. По-видимому, семейство рецепторов, необходимых для нормального эмбрионального морфогенеза дрозофилы, также принадлежит к семейству интегринов. В присутствии пептидов, содержащих последовательность RGD, происходит нарушение эмбриогенеза и блокируется гаструляция у Drosophila.
2.6 Другие способы связывания с матриксом и белками адгезии
Интегрины не уникальны в своих свойствах, касающихся связывания с внеклеточным матриксом и белками адгезии. Показано, что ламинин, тромбоспондин и фактор фон Виллебранда специфически связываются с гликолнпидами, содержащими сульфогруппы. Физиологическое значение этого взаимодействия неясно. Фермент 5' - нуклеотидаза также участвует во взаимодействии как с внеклеточными, так и с внутриклеточными компонентами, хотя роль этого взаимодействия in vivo не доказана. Существуют также рецепторы ламинина, которые не относятся к семейству интегринов.
Всесторонне изучена агрегация диссоциированных клеток губки. Для инициации этого процесса должно произойти связывание некоего высокомолекулярного фактора с внеклеточным доменом рецептора агрегации, находящимся в плазматической мембране. Это, по-видимому, служит сигналом к запуску быстрого распада фосфатидилинозитола и образованию внутриклеточных вторых посредников, которые инициируют агрегацию, опосредованную фактором сборки коллагена. Коллагеновые тяжи служат матриксом, на котором сорбируются клетки губки.
3. Повторное использование мембран и эндоцитоз с участием рецепторов
До сих пор мы считали мембрану животной клетки статичной структурой, состав которой изменяется только во время роста клетки или при дифференцировке. На самом деле клеточная поверхность чрезвычайно динамична и составляет вместе с клеточными мембранными органеллами часть сложной сети мембранного транспорта. Мембранный транспорт можно разделить на две составляющие: эндоцитоз и экзоцитоз. Эндоцитоз - это поглощение внеклеточной жидкости и частиц в составе мембранных пузырьков, а экзоцитоз включает процессинг новосинтезированных белков и липидов и их доставку к месту секреции или включения в плазматическую мембрану, лизосомы или вакуоли. В обеих системах происходит селективный перенос специфических мембранных компонентов между мембранами внутри клетки с помощью везикул, которые отшнуровываются от одной мембраны и сливаются с другой. Важнейшей особенностью регуляции этих процессов является закисление везикул и вакуолей с помощью Н + - АТРаз.
3.1 Общие свойства эндоцитозного пути
Разграничим процессы поглощения клеткой крупных частиц, растворенных веществ и жидкости. Поглощение крупных частиц называется фагоцитозом и характерно только для клеток некоторых типов. Процесс активируется частицами и чувствителен к цитохалазину. После образования промежуточной фагосомы везикула закисляется и затем сливается с лизосомой, содержащей ферменты деградации.
В основе поглощения жидкости и опосредованного рецепторами поглощения растворенных веществ лежит образование окаймленных ямок и окаймленных везикул. Термин «окаймленные» относится к морфологии этих структур, выявляемой с помощью электронной микроскопии. Отличительной их особенностью является наличие решетчатой структуры из молекул белка клатрина, который связывается с углублениями на поверхности плазматической мембраны и везикулами, образующимися из таких ямок. Возможно, существуют и другие эндоцитозные пути без участия окаймленных везикул, однако о них известно немного. Окаймленные везикулы участвуют и в экзоцитозе.
На долю окаймленных ямок обычно приходится всего 1 - 2% общей площади поверхности плазматической мембраны, и большинство белков плазматической мембраны не обнаруживаются на этих участках. Однако концентрация некоторых белков в этих ямках очень высока. Например, в них сосредоточено около 70% белка - рецептора липопротеина низкой плотности. В некоторых случаях сродство рецептора к окаймленным ямкам постоянно, в других рецептор концентрируется в них только при связывании лиганда. В табл. 9.2 перечислены некоторые рецепторы плазматической мембраны, участвующие в поглощении специфических лигандов с помощью окаймленных ямок и везикул.
Таблица 9.2
Некоторые рецепторы, интернализуемые при эндоцитозе
По-видимому, после образования эндоцитозных везикул оболочка из клатрина удаляется специфическим белком в ходе АТР-зависимой реакции. Эти данные получены в экспериментах in vitro; роль указанного белка in vivo пока не выявлена. Везикулы без клатрина становятся частью сложной системы трубочек и везикул, называемых периферическими эндосомами; они локализованы вблизи плазматической мембраны. На основе функциональных и морфологических различий субпопуляциям эндосом были присвоены различные названия. Мы будем называть их просто эндосомами. Существует также система эндосом, локализованных вблизи центриолей и комплекса Гольджи; они называются перинуклеарными эндосомами. Эти структуры почти наверняка также участвуют в эндоцнтозном мембранном транспорте. Конечный пункт эндоцитозного пути находится во вторичных лизосомах, где происходит деградация отдельных растворенных веществ.
Скорость, с которой происходит рециклирование мембран, поистине удивительна. Ее можно определить с помощью водорастворимых, не проникающих в мембрану меток, оценивая скорость поглощения клеткой внеклеточной жидкости. К таким меткам относятся, например, радиоактивный инулин, декстран, краситель люцифер желтый. Измерения, проведенные на гепатоцитах с использованием инулина, показали, что эти клетки поглощают путем эндоцитоза за 1 ч количество жидкости, составляющее не менее 20% их объема, и количество мембранного материала, по площади превышающее в пять раз площадь их базолатериальной плазматической мембраны! Скорость эндоцитоза у других типов клеток не столь велика, но также впечатляет; например, макрофаги поглощают за 1 ч мембранный материал, площадь которого вдвое превышает площадь их поверхности, а адипоциты - материал, по площади составляющий 0,2 площади их поверхности. Большая часть жидкости, поглощаемой клетками, быстро выводится из них зa характерное время от 1 мин до 20 мин. Возможно, между плазматической мембраной и периферическими эндосомами устанавливается динамическое равновесие, причем на долю эндосом приходится лишь около 3% общего объема клетки. Кроме того, некоторая часть инулина, поглощаемого i епатоцитами, поступает в гораздо медленнее обменивающийся внутренний пул, что, возможно, отражает попадание его в другие внутренние вакуоли, например в лизосомы.
Эти данные свидетельствуют об исключительной динамичности поверхности мембран. Бретчер обратил внимание на то, что если бы какой-то участок плазматической мембраны включался в одном месте клеточной поверхности и появлялся в другом, то это означало бы, что существует однонаправленный мембранный по-
ток. Это представление было положено в основу модели, объясняющей механизм амебоидного движения клетки таким же образом, как и «кэпииг» поверхностного антигена. Кэпинг наблюдается как у лимфоцитов, так и у других типов клеток; он инициируется агрегацией белков плазматической мембраны, обычно путем связывания мультивалентного лнганда с каким-то компонентом клеточной поверхности. Связанный компонент агрегирует с образованием «очажков», которые затем объединяются в один крупный агрегат - кэп. Далее происходит поглощение белковых агрегатов. Было высказано предположение, что первые белковые агрегаты пассивно увлекаются предполагаемым массовым мембранным потоком, при этом они концентрируются около места интернализацин. Альтернативная точка зрения, гораздо более распространенная, заключается в том, что кэпинг - это активный процесс, протекающий при прямом участии элементов цитоскелета. Интересно отметить, что ганглиозиды также можно индуцировать для образования кэпа на лимфоцитах.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8