Рефераты. Лесной тип биологического круговорота

p align="left">Консументы I порядка. Этот трофический уровень составлен непосредственными потребителями первичной продукции. В наиболее типичных случаях, когда биомасса продуцентов создается фотоавтотрофами, это фитофаги. Консументы частично используют пищу для обеспечения жизненных процессов, а частично строят на ее основе собственное тело, осуществляя таким образом первый, принципиальный этап трансформации органического вещества, синтезированного продуцентами. Процесс создания и накопления биомассы на уровне консументов обозначается как вторичная продукция.

Консументы II и III порядков. Эти уровни объединяют животных с плотоядным типом питания (зоофаги). В первую группу входят все хищники, поскольку их специфические черты практически не зависят от того, является жертва фитофагом, или плотоядна. Во вторую группу (третий порядок) входят паразиты и «сверхпаразиты», хозяева которых паразиты.

Деление биоценоза на трофические уровни представляет собой лишь общую схему. Действительные формы взаимоотношений сложнее. Существует много видов со смешанным питанием, которые могут относиться к различным трофическим группам.

Переход биомассы с нижележащего трофического уровня на вышележащий связан с потерями вещества и энергии. В среднем считается, что лишь порядка 10% биомассы и связанной в ней энергии переходит с каждого уровня на следующий. В силу этого суммарная биомасса, продукция и энергия уменьшаются по мере восхождения по трофическим уровням. Эта закономерность сформулирована Ч. Элтоном в виде правила экологических пирамид и существует как главный ограничитель длинны трофических цепей (Шилов, 2000).

Прямые пищевые связи типа «растение-фитофаг-хищник-паразит» объединяют в цепи питания, или трофические цепи.

Каждый трофический уровень составлен не одним, а многими конкретными видами. Благодаря видоспецифичности питания увеличение числа видов в биоценозе определяет более полное использование ресурсов на каждом трофическом уровне. Это обстоятельство прямо связано с повышением полноты биогенного круговорота веществ.

Увеличение видового разнообразия выступает как «гарантийный механизм», обеспечивающий надежность круговорота веществ как главной функции экосистем. Суть механизма заключается в том, что монофагия встречается в природе довольно редко; немногочисленны и олигофаги. Большинство животных использует в пищу более или менее широкий набор кормовых объектов. В результате помимо прямых «вертикальных» пищевых связей возникают боковые, объединяющие потоки вещества и энергии двух и более пищевых цепей. Таким путем формируются пищевые трофические сети, в которых множественность цепей питания выступает как приспособление к устойчивому существованию экосистемы в целом: «дублирование» потоков вещества и энергии по большому числу параллельных трофических цепей поддерживает непрерывность круговорота при всегда вероятных нарушениях отдельных звеньев пищевых цепочек.

Рассмотренные выше процессы связаны с синтезом и трансформацией органического вещества в трофических сетях и характеризуют собой так называемые цепи выедания или «пастбищные цепи». Процессы поэтапной деструкции и минерализации органических веществ обычно выводятся в отдельный блок трофической структуры, называемой цепями разложения (детритные цепи).

Вычленение детритных цепей связано, прежде всего, с тем, что минерализация органики практически идет на всех трофических уровнях: и растения и животные в процессе метаболизма редуцируют органическое вещество. Детритные же цепи начинаются с разложения мертвой органики сапрофагами, которые механически, а отчасти и химически подготавливают органическое вещество к действию редуцентов. В наземных экосистемах этот процесс преимущественно сосредоточен в подстилке и почве.

На уровне консументов происходит разделение потока органического вещества по разным группам потребителей: живое органическое вещество следует по цепям выедания, а мертвое - по цепям разложения. В наземных биоценозах цепи разложения имеют очень большое значение в процессе биологического круговорота; в них перерабатывается до 90% прироста биомассы растений, попадающей в эти цепи в виде опада (Шилов, 2000).

1.2 Химический состав живого вещества как следствие избирательного перемещения веществ в биологическом круговороте

Средний состав живого вещества заметно отличается от состава земной коры (табл. 1). В земной коре преобладают кислород, кремний, алюминий, железо. В живых организмах преобладают - углерод, водород, кислород, азот, кальций, фосфор. Локальное содержание элементов в земной коре определяется её строением, вулканической деятельностью, типом пород, характером их выветривания (Карпачевский, 2005).

Таблица 1 - Содержание главных элементов в земной коре (по В. Гольдшмидту)

Элемент

Содержание, %

по массе

по объему

атомное

O

Si

Al

Fe

Mg

Ca

Na

K

46,60

27,72

8,13

5,00

2,09

3,63

2,83

2,59

9,20

0,80

0,77

0,68

0,56

1,48

1,60

2,14

62,55

21,22

6,47

1,97

1,84

1,94

2,62

1,42

Наибольшая доля в составе живого вещества приходится на кислород (65-70%) и водород (10%). Остальные 20-25% представлены разнообразными элементами общим числом более 70. При этом большая доля (от 1 до 10%) приходится на такие элементы, как C, N, Ca.

Во второй группе (содержание 0,1-1%) находятся S, P, K, Si; в третьей группе (содержание 0,1-0,01%) - Fe, Na, Cl, Al, Mg. Эти же элементы составляют примерно 99,6% веществ слагающих земную кору и почву.

В составе живого вещества постоянно присутствуют рассеянные и редкие элементы, общим числом не менее 20.

Отдельные элементы почти целиком захватываются живым веществом, постоянно находясь в его различных формах. Таковы J, P и в большой мере К.

Существуют специфические организмы, обладающие способностью преимущественного накопления отдельных элементов в количествах более 10%. Ныне известна специфическая аккумулирующая роль организмов для 11 таких элементов: Si, Al, Fe, Ca, Mg, Ba, Mn, S, Sr, P, C.

Если сравнить средний состав организмов со средним составом земной коры, то можно видеть чрезвычайно важные для почвенных и геохимических процессов явления перераспределения химических элементов.

В составе растительных организмов в сравнении с составом земной коры увеличено в среднем содержание:

В десятки раз C, H.

В несколько раз N.

На десятки процентов О.

Вместе с тем для многих элементов вследствие избирательного накопления в растительном организме Н, О, N и С обнаруживается в сравнении с земной корой относительное уменьшение содержания:

В несколько раз P, S, Br, K.

В десятки раз: Cl, Ca, Mg, I, Cu, Mo.

В сотни раз: Na, Ba, Mg, Fe, Al, Si.

В тысячи раз: Cs, Ti, F.

В десятки тысяч раз: Ra.

В животных организмах в сравнении с земной корой увеличено содержание следующих элементов:

В десятки раз C, N, H.

В несколько раз P, S.

На десятки процентов O.

На сотые доли процента Cl.

Уменьшено по сравнению с составом земной коры содержание:

В несколько раз: Ca, Na, K.

В десятки раз: Zn, Br, Mg, As.

В сотни раз: Pb, Cu, F, Fe, B.

В тысячи раз: Mn.

В десятки тысяч раз: Si, Ti, Al.

Состав растительных и животных организмов, несмотря на близкое содержание ряда элементов, имеет существенные различия.

В животных организмах отмечается гораздо более высокая степень аккумуляции, чем в растительных, N, P, S, Cl, Ca. Вместе с тем животных организмах в сравнении с растениями меньше аккумулируется Si, Al, Mn (Ковда, 1973).

Отмеченные различия химического состава неживой природы и разных форм жизни (автотрофов и гетеротрофов) происходят из того, что при биогенном движении атомов происходит их преимущественное поглощение, либо наоборот игнорирование, на фоне высоких концентраций в неживой природе. Это связано напрямую с химией органических соединений. Те элементы, которые наиболее легко образуют химические связи с углеродом и накапливаются преимущественно в живых организмах (кислород и водород). Вторым фактором является доступность элемента в неживой природе. Чем меньше доступность элемента для биогенного цикла, тем меньше его вероятность вовлечения в него в химически активной форме.

При поступлении элементов в живое вещество начинается их дифференциация по степени биофильности на каждом из трофических уровней. Наиболее важные отличия заключаются в трофических уровнях продуцентов и консументов. Так консументы характеризуются меньшим содержанием кислорода и большим водорода, что отражает меньший редокс-потенциал их жидкой среды. Больше азота и серы, что отражает более высокую роль в метаболизме протеинов. Более высокое содержание фосфора и кальция обязано его накоплением в твердых скелетных тканях, выполняющих опорную функцию.

В продуцентах же более высокое содержание кислорода и меньшее водорода. Меньше азота. Больше магния, который необходим для хлорофилла. Выше содержание калия.

Отсюда у продуцентов и консументов различные биогеохимические функции. Однако доминирующую роль массы живого вещества Мировой суши образуют высшие растения. Масса наземных животных составляет около одного процента от фитомассы, что связано с быстрым рассеиванием энергии по трофическим цепям (Правило одного процента). По этой причине состав растительности суши обусловливает состав всего живого вещества Земли (Добровольский, 1998).

1.3. Незамкнутость биологического круговорота

Под функционированием биологического круговорота понимают (Титлянова, Тесаржова, 1991) изменение состояния во времени его параметров. Функционирование - жизнь круговорота, его движение. Именно благодаря функционированию возможен круговорот, а его незамкнутость, разница между входом и выходом, некоторое несовпадения параметров на входе у каждого нового цикла приводит к развитию, преобразованию экосистем. Если часть химических элементов непрерывно обращается в живом веществе, захватываясь через пищевые цепи или после минерализации новыми организмами, то существенная часть этих же элементов непрерывно выключается из биологических круговоротов, увлекаясь геохимическими потоками в океан или внутриконтинентальные депрессии. Это особенно заметно в отношении тех элементов, которые играют подчиненную роль в жизни организмов и которые проходят «транзитом» через живое вещество полностью или частично. Таковы Cl, Na, значительная часть C, S, Mg, Ca. Ограниченное использование организмами этих элементов приводит к тому, что, проходя циклическим путем через живое вещество, элементы, в общем, остаются подчиненными геологическому круговороту веществ и уходят в виде растворов и взвесей с геохимическими потоками в реки, моря, океаны, внутриконтинентальные бессточные низменности. Именно этим объясняется признанное всеми положение о том, что концентрация солей в Мировом океане за время его существования непрерывно возрастала (Ковда, 1973).

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.