Рефераты. Лесной тип биологического круговорота

p align="left">2.2. Классификации круговоротов

Заключительным этапом при изучении биологического круговорота (БИК) является классификация, которая сводится к упорядочению полученного материала, определению специфики происходящих в БИК процессов и последующему установлению характерных особенностей циклов внутри од-ной почвенно-биоклиматической зоны или сопоставлению экосистем в зо-нальном аспекте.

Все разнообразные классификации учитывают положение изученного БГЦ в системе почвенно-биоклиматических зон. Вторая особенность классификаций со-стоит в том, что критерии для классификации выбираются на эмпирической осно-ве. Несомненно, что большинство из них важные, но являются ли они существен-ными, т.е. достаточными, чтобы отличать БГЦ друг от друга, не всегда ясно. Не-которые показатели БИКа для различных географических зон перекрываются (Васильевская, Богатырев, 2003).

Наиболее широко используемой группой являются данные по продуктивно-сти. Придавая исключительную роль показателям продуктивности, Бази-левич (1986) использовала их для оценки структуры и функции наземных экоси-стем (табл. 26).

Из-за зависимости этих показателей от гидротермического режима, группи-ровка зональных экосистем в таксоны высокого ранга осуществляется в преде-лах биоклиматических областей одного термического пояса. Для характеристи-ки структуры семейств экосистем используются два критерия: запасы живой фитомассы и запасы мертвой массы, без учета гумуса и торфа.

Основные закономерности структуры экосистем и функционирования сво-дятся к следующим положениям:

1) изменение величины годичной продукции экосистем по зонам описывает-ся двухвершинной кривой; 2) для интразональных переувлажненных экосистем с севера на юг наблюдается непрерывное возрастание величины годичной продукции; 3) отношение мортмассы к годичной продукции подчине-но строгой закономерности, включая зональные и интразональные экосисте-мы; 4) наибольшие скорости оборота характеризуют экосистемы суббореального и субтропического поясов, что связано, прежде всего, с тепловым балансом земной поверхности.

Показатели продуктивности положены в основу классификации ландшаф-тов. Так Перельман и Касимов (1999) используют два критерия: биомассу и продук-тивность. Таксономия классификации включает группы, типы, семейства. Груп-пы ландшафтов определяются по принадлежности к зоне (тундровая, лесная, степная и т.д.). В ряде случаев выделение групп обусловлено другими фактора-ми, включая позональное их размещение (например, верховые болота в таеж-ной зоне, соровые солончаки в пустынной и т.д.).

В основу выделения типа биогенного ландшафта положен коэффициент К, выводимый из параболической зависимости П = БК, где П - ежегодная про-дукция, Б - общая биомасса. Для таежной зоны К = 0,54-0,55; для широколи-ственных лесов - 0,58-0,60; для влажных степей - 0,81. Коэффициент К посто-янен при различных величинах П и Б. Тип ландшафта в целом соответствует типам растительного покрова. Внутри ландшафтов, характеризующихся раз-личными биомассой и продукцией, но близким соотношением между ними, выраженным коэффициентом к (П/Б), выделяют три семейства. Например, в пределах таежной зоны выделяются северное, среднее и южное (Васильевская, Богатырев, 2003).

В детальной и получившей наибольшую известность классификации круго-ворота элементов Н.И. Базилевич используется шесть признаков: 1) при-надлежность БГЦ той или иной зональной единице; 2) показатели структуры фитомассы: а) биомасса растений, б) годичный прирост, в) спад, г) истинный прирост, д) подстилка; 3) показатели интенсивности круговорота, устанавлива-емые по отношению величины запаса подстилки к величине опада; 4) характер сочетаний химических элементов, потребляемых на построение годичного при-роста или возвращаемых с годичным приростом. Типизацию химизма обменных процессов производят по двум ведущим элементам с указанием сопутствующих элементов. Группы типов химизма обменных процессов объединяют в классы по одному преобладающему элементу; 5) величина средней зольности прирос-та - спада оценивается по средневзвешенному содержанию зольных элементов в 100 г прироста - спада (в %); 6) показатели емкости БИКа оцениваются по ве-личине ежегодно потребляемых на построение прироста (возвращаемых с спа-дом) зольных элементов и азота (в кг/га). В целях унификации принята десяти-балльная шкала числовых показателей.

3 Лесной тип биологического круговорота

3.1. Различия степных и лесных экосистем

Энергетические затраты на первичную продукцию и в целом на биогеоценотические процессы возрастают от среднетаежных растительных формаций к подтайге и широколиственным лесам, а затем снова уменьшаются по направлению к южной лесостепи и северной степи. Максимальное количество энергии используется в хвойно-широколиственных и неморальных лесах, а также в южнотаежных пихтово-ельниках и сосняках.

Аналогичная картина свойственна энергетике групп почв. Практически вся плеяда дерново-подзолистых и серых лесных почв отличаются наибольшими суммарными затратами энергии на почвообразование, между тем как южные черноземы и темно-каштановые почвы развиваются в условиях минимальных затрат.

Стационарные ландшафтно-геофизические эксперименты позволяют выявить причинные механизмы различий между лесными и лугово-степными экосистемами. Так, в одних и тех же зональных условиях типичной лесостепи коэффициент эффективности использования (поглощения) фотосинтетически активной радиации в снытьевой дубраве в два с лишним раза выше, чем в некосимой степи. Кроме того, в лесу имеет место четырехкратное повышение транспирационного коэффициента фитобиоты. Очевидно, более сложная фитоценотическая структура, а также более интенсивная транспирация требуют и больших энергетических затрат. Однако при относительно низком уровне поглощения солнечной энергии травянисто-степная экосистема использует ее более эффективно благодаря тому, что у нее практически выпадает целое звено биологического круговорота - создание скелетной (древесной) многолетней фитомассы, изымающие из годового цикла значительную часть чистой продукции. В результате малый биологический круговорот становится проще, интенсивнее и более замкнут. Образно говоря, с точки зрения устойчивости метаболизма в одних и тех же зональных условиях, допускающих одновременное существование степной и лесной растительности, степь оказывается энергетически более выгодной экосистемой, чем лес (Коломыц, 2003).

3.2. Биологический круговорот в таежных сообществах

В растительности бореальных и суббореальных лесов сосредото-чена значительная часть живого вещества планеты -- около 700*106 т сухой массы. Биомасса, приходящаяся на единицу площади раз-ных типов лесов, колеблется от 10*103 до 30*103 т/км2. Масса прироста (ежегодной продукции) в хвойных северотаежных лесах составляет около 450 т/км2 в год, в хвойных и смешанных лесах южной тайги -- 800 т/км2 и более, в широколиственных суббореальных лесах -- до 900 т/км2.

Общая биогеохимическая особенность рассматриваемых лесных экогеосистем -- продолжительное задерживание поглощенных хими-ческих элементов в живом веществе. По этой причине общая био-масса на единице площади лесного фитоценоза от 20 до 50 раз больше массы прироста. Замедленность движения масс элементов в системе биологического круговорота в лесных экогеосистемах уси-ливается тем, что основная часть биомассы (около 80%) находится над почвой, и отмирающие части растений опадают на ее поверх-ность и образуют обильную лесную подстилку.

Микробиологическая деятельность в почвах лесов протекает весьма напряженно, причем наряду с бактериями и актиномицетами особо важную роль играют грибы, активно разлагающие углеводы, из которых преимущественно состоят продукты опада лесной расти-тельности. Из-за длительного холодного сезона, подавляющего микробиологическую деятельность, полного разрушения опадаю-щих частей растений не происходит. По мере увеличения длитель-ности холодного зимнего сезона масса неразложенных растительных остатков возрастает с юга на север от 1500 т/км2 сухого органичес-кого вещества широколиственных лесов до 8000--8500 т/км2 северо-таежных лесов.

Неотъемлемой частью зоны лесов Мировой суши являются боло-та. В некоторых регионах, например на территории обширной Западно-Сибирской низменности, ландшафты болот и заболочен-ных местностей составляют более 1/3 всей площади. В ландшафтах болот существует совершенно особая биогеохимическая ситуация. Замедленность биологического круговорота масс химических эле-ментов, свойственная всем бореальным лесным экогеосистемам, еще сильнее выражена в экогеосистемах болот. В наиболее распростра-ненном типе болотных фитоценозов -- сфагновых болотах -- годовая продукция составляет примерно 10% от живой биомассы и доли процента от массы мертвого органического вещества торфа.

В северных вариантах лесных фитоценозов количество некото-рых химических элементов в мертвом органическом веществе лес-ной подстилки больше, чем в живой биомассе. В смешанных и лиственных лесах количество элементов в подстилке меньше, чем в биомассе, хотя абсолютное значение масс элементов в подстилке весьма большое. Таким образом, кроме значительного количества элементов в живой массе растительности имеется их большой запас в органическом веществе лесных подстилок. Замедленность цикла массообмена в процессе фотосинтеза -- деструкции органического вещества обусловливает торможение миграции масс элементов в системе почва -- растительность. Заторможенность биологического круговорота элементов усиливается по мере усиления бореальности окружающей среды (Добровольский, 1998).

По обобщенным данным Родина и Базилевич (1965) полновозрастные ельники плакоров северной, средней и южной тайги имеют биомассу соответственно около 100 т/га, 250 т/га, 350 т/га, т. е. можно полагать, что с изменением климатических условий и, прежде всего фотосинтетической активной радиации запасы биомассы возрастают более, чем втрое.

Исследования Гришиной (1974) на Валдае показали, что при движении по катене от элювиальных к аккумулятивным ландшафтам происходит увеличение биомассы, однако в случае заболоченности аккумулятивного ландшафта происходит снижение биомассы.

Структура фитомассы древостоев характеризуется резким превышением надземной многолетней части над корнями. В молодых ельниках и сосняках это соотношение можно выразить как 2:1, а в спелых древостоях - 3:1, 4:1. Максимальную продукцию древостои создают в возрасте от 30 до 60 лет. Прирост в этот период может достигать 15-20 т сухой массы на гектар в год (Гришина, 1974).

Для хвойных древостоев, так же как и для тундровых растительных ассоциаций характерно высокое содержание азота (вслед за С, О, Н). Количество его в лесном ценозе превышает сумму зольных элементов. В листве подлеска, в хвое, тонких ветвях и корнях азота больше, чем любого минерального элемента, и лишь в стволе и крупных ветвях он уступает первенство по кальцию. В хвойных фитоценозах наибольшую зольность имеют травянистые растения. Например, пролеска - 15,3%, кислица - 11,59%, папоротник - 7,38%, затем следуют листья пролеска, затем хвоя.

Безусловно, среда обитания и тип леса, характер подлеска и напочвенного покрова будут накладывать отпечаток, и вызывать некоторые изменения в последовательности накопления элементов. Как отмечает Гришина (1974) контрастность биологического круговорота в одной зоне может быть не менее значительной, чем в фитоценозах на плакорах в различных подзонах тайги.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.