Рефераты. Механизмы выживания бактерий в окружающей среде

p align="left">Изменения рН окружающей среды могут вызывать у многих микроорганизмов компенсаторные ферментативные сдвиги. Например, Escherichia coli реагирует на повышение кислотности среды синтезом декарбоксилаз аминокислот. Образующиеся в результате амины приводят к снижению кислотности среды. Повышение щелочности среды стимулирует образование дезаминаз аминокислот, что приводит к снижению рН. Большинство активно метаболизирующих щелочеустойчивых организмов имеет склонность к снижению рН среды в процессе роста. Такая реакция является вторичным механизмом устойчивости микробных клеток к щелочной среде. Пока неизвестно, каков первичный механизм, обеспечивающий стабильность клеток и их рост при высоких значениях рН. Большинство облигатных ацидофилов не использует такого вторичного механизма устойчивости, поскольку их активный рост не приводит к повышению рН. В тех случаях, когда рост ацидофилов начинается в среде, близкой к нейтральной, величина рН быстро снижается. Экстремальные ацидофилы не просто переносят низкие значения рН, но действительно нуждаются в ионах водорода для своего роста и стабильности. Примером подобных микроорганизмов служит Т. acidophilum, которая лизируется при рН выше 5. Следовательно, устойчивость клеток к высокой кислотности или щелочности, вероятно, объясняется их структурными или метаболическими особенностями (Кашнер Д., 1981).

Внутриклеточный рН экстремальных ацидофилов обычно не ниже 4,5. Транспорт ионов и синтез АТФ управляются протонной помпой. Внеклеточные белки экстремальных ацидофилов отличаются высокой стабильностью по отношению к кислотам, в то время как внутриклеточные имеют нейтральный или слабокислый оптимум активности. Вместе с тем нейтральный рН часто бывает токсичным для клеток экстремальных ацидофилов. Возможно, это связано с нарушением целостности цитоплазматической мембраны, для стабильности которой требуются высокие концентрации ионов водорода.

Внутриклеточный рН экстремальных алкалифилов также достаточно высок, однако не превышает 9,5. Белки экстремальных алкалифилов обладают большой алкалистабильностью, а также имеют оптимум активности при щелочных значениях рН. Благодаря этому протеазы, липазы и целлюлазы из алкалифильных микроорганизмов широко используют при производстве детергентов. Транспортные процессы в клетках алкалофилов и движение клеток основаны на градиенте Na+, однако синтез АТФ происходит за счет функционирования протонной помпы.

У облигатных алкалофилов в поддержании цитоплазматического рН, более низкого по сравнению с наружным, ведущая роль принадлежит Na+/Н+- антипортеру, катализирующему движение внутрь клетки протонов в обмен на ионы натрия, в которых эти бактерии нуждаются. В любом случае основными барьерами, обеспечивающими необходимый рН у облигатных ацидо - и алкалофилов, служат клеточная стенка и ЦПМ (Бухарин О.В., 2005).

Жизнедеятельность микроорганизмов часто может приводить к изменению рН среды. Так, к подкислению среды ведут окисление сульфидов до серной кислоты тионовыми бактериями, процессы нитрификации, многие брожения. В некоторых случаях бактерии могут регулировать рН среды за счет изменения метаболизма. Наиболее известным примером является двухфазность брожений, подробно изученная в 30-х годах XX в. В. Н. Шапошниковым на примере ацетонобутилового брожения (Clostridium acetobutilicum). При снижении рН до критического уровня в результате выделения масляной кислоты бактерия переключается на образование нейтральных продуктов, ацетона и бутанола.

К подщелачиванию среды приводят дезаминирование белков и аминокислот аммонификаторами, разложение мочевины уробактериями, а также фотоассимиляция С02 (так, в часы интенсивного фотосинтеза значение рН воды в фотической зоне водоема может возрастать на 1 -- 2 единицы). Стабильное значение рН среды в некоторых местообитаниях связано с ее буферностью. Наибольшие масштабы имеет карбонат/бикарбонатная система, обеспечивающая постоянство рН вод Мирового океана (Заварзин Г.А., 2001).

Все организмы, растущие при экстремальных значениях рН, располагают, механизмами для поддержания внутриклеточного рН на уровне, близком к нормальным физиологическим величинам. Такие кислотолабильные молекулы, как АТР и ДНК, не смогли бы существовать, если бы внутриклеточная концентрация водородных ионов была такой же, как и во внешней среде. Однако по отношению к внутриклеточной среде трудно применить классическую концепцию рН. Согласно этой концепции, рН является применяемым на практике показателем концентрации или активности ионов водорода в водном растворе, между тем как внутриклеточное содержимое представляет собой коллоидный, а не истинный водный раствор. Измерение величины внутриклеточного рН не дает информации относительно недиссоциированных протонов, связанных с донорными молекулами.

Внутриклеточный рН имеет определенную ценность, так как он дает представление об общих условиях, существующих внутри клетки.

В поддержании градиентов рН в клетке важную роль играет как природа клеточной стенки и мембраны, так и клеточный метаболизм.

4. ЖИЗНЬ МИКРООРГАНИЗМОВ ПРИ ВЫСОКИХ КОНЦЕНТРАЦИЯХ СОЛЕЙ И РАСТВОРЕННЫХ ВЕЩЕСТВ И В УСЛОВИЯХ НЕДОСТАТКА ВОДЫ

В живых клетках вода служит средой, в которой молекулы разных размеров взаимодействуют между собой. Структура воды, в которой находятся растворенные вещества, контролирует все жизненно важные процессы в клетке: действие ферментов и регуляцию их активности, ассоциацию и диссоциацию органелл, структуру мембран и их функционирование. Небольшие изменения в концентрации растворенных веществ и активности воды могут приводить к значительным физиологическим изменениям, поэтому не удивительно, что многоклеточные организмы выработали специальные физиологические механизмы для поддержания постоянного состава не только жидкостей тела, но и внутриклеточной среды. Например, в крови млекопитающих поддерживается равновесие между ионами натрия и калия с помощью сложного гормонального контроля, действующего на уровне почек и основанного на обмене между кровью и тканями.

Однако микробные клетки должны самостоятельно приспосабливаться к внешней водной среде. В качестве «экстремальных условий» можно рассматривать весьма обычные условия, когда клетки растут в растворах, значительно более разбавленных, чем их внутренняя среда, что имеет место у всех пресноводных микроорганизмов. Животные предохраняют от осмотического лизиса клетки своего тела, поддерживая концентрации веществ, растворенных во внеклеточных жидкостях, в соответствии с их концентрациями внутри клеток. Часто их наружный покров совершенно непроницаем для воды. Большинство микроорганизмов покрыто жесткой клеточной стенкой, предотвращающей их лизис в результате высокого осмотического давления, возникающего внутри этих клеток. У простейших, которые имеют более гибкие стенки, проблемы, связанные с высоким осмотическим давлением, решаются другим путем: вода, поступающая в клетки, собирается в сократительные вакуоли, а затем выделяется из них наружу.

Напротив, клетки, растущие при высоких концентрациях растворенных веществ, по-видимому, не способны поддерживать цитоплазму в более разбавленном состоянии. Это было бы возможно только в том случае, если бы клетки были непроницаемы для воды или непрерывно осуществляли активное выделение растворенных веществ. Хотя внутриклеточная среда микроорганизмов по химическому составу сильно отличается от внешней, не известно ни одного вида, который был бы способен поддерживать внутри клеток общую концентрацию растворенных веществ на более низком уровне, чем в окружающей среде (Кашнер Д., 1981).

Известно, что многие внутриклеточные компоненты микроорганизмов нуждаются в высоких концентрациях Na+ и К+. Белки галофилов содержат много аспартата и глутамата, т.е. они более «кислые», в белках устанавливаются новые гидрофобные взаимодействия, приводящие к более плотной упаковке глобул. На поверхности клеток работает механизм «белкового щита» (S-слои), когда наружу экспонируются СООН-группы аминокислот, удерживающие Na+. Эти же группы формируют «гидратированную» оболочку клеток за счет электростатического ориентирования диполей воды. Галофилы осуществляют активный транспорт ионов из клетки, таким образом поддерживая некоторый «осмостаз». Также клетки иногда заменяют Na+ на К+.

Для удержания воды в цитоплазме в условиях высокой солености у галофильных микроорганизмов существуют разнообразные механизмы. Основным механизмом приспособления к осмотическому состоянию среды служит синтез микроорганизмами осмопротекторов (осмолитов, или совместимых растворителей) -- низкомолекулярных органических веществ, концентрация которых в цитоплазме уравновешивает внешнее давление (см. табл.1 )

Таблица № 1.

Совместимые растворители (осмолиты)

Организмы

Совместимый растворитель

Минимальная о„.

Бактерии-нефототрофы

Глицин-бетаин, пролин

(у грамположительных),

глутамат (у грамотрицательных)

0,97-0,90

Пресноводные цианобак-терии

Сахароза, трегалоза

0,98

Цианобактерии соленых озер

Глицин-бетаин

0,90-0,75

Галофильные аноксиген-ные фотогрофные бактерии Edothiorhodospira

Глицин-бетаин, трегалоза, эктоин

0,90-0,75

Экстремально-галофильные археи

КС1 (закачивается внутрь с обменом на NaCl)

0,75

Их состав зависит от концентрации NaCl в среде и не одинаков у разных микроорганизмов. К осмопротекторам относятся некоторые аминокислоты и их производные (глутаминовая кислота, пролин), сахара (в частности, трегалоза), гетерогликозиды, полиспирты, глицин-бетаин. При пониженной водной активности организм находится в условиях осмотического стресса, что приводит к уменьшению скорости роста и снижению общего количества образуемой биомассы (Покровский В.И., 1999).

Адаптация к солености у экстремально галофильных архей (порядок Halobacteriales) основана на аккумуляции ионов К+. Внутриклеточная концентрация ионов может быть выше в 1000 раз, чем в окружающей среде, т.е. ферменты галобактерий работают в солевом растворе. Подобная же стратегия обнаружена у некоторых эубактерий -- Salinibacter ruber и представителей порядка Haloanaerobiales. Помимо концентрации солей повышенное осмотическое давление и низкая активность воды создаются высоким содержанием органических веществ. Приспособленные к таким условиям организмы называют осмофилами -- это спироплазмы, размножающиеся в нектаре цветов, мицелиальные грибы и дрожжи, обитающие в варенье, сиропах, сухофруктах.

Для микроорганизмов, развивающихся на суше, большое значение имеет приспособление к сухости и контакту с воздухом. Условия водного стресса и опасность высыхания создаются на поверхности скал, камней, деревьев, различных сооружений, в почве, особенно почве пустынь. Основными механизмами защиты от высыхания служит образование слизистых капсул или переживающих клеток (спор, конидий, цист). Высокую устойчивость на воздухе обнаруживают многие микобактерии с высоким содержанием липидов в клеточной стенке. Типичными компонентами микроценозов, развивающихся на поверхности камня и в почве, являются микрококки, артробактеры, нокардии, проактиномицеты и актиномицеты. В целом грамположительные бактерии актиномицетной линии рассматривают как континентальную ветвь эволюции прокариот, приспособившуюся к жизни в наземных условиях (Бухарин О.В., 2005).

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.