Министерство образования Российской Федерации
Государственное образовательное учреждение высшего профессионального образования
«Тульский государственный университет»
Кафедра Геоинженерии и Кадастра
КОНТРОЛЬНАЯ РАБОТА
ОСНОВЫ ГЕОДЕЗИИ
Содержание
Задание 1. Определить среднюю квадратическую ошибку угла, измеренного одним полным приемом при помощи теодолита Т-30, учитывая ошибку mо отсчета по микроскопу при двух наведениях t, визирования mv и за внецентренность теодолит mc и вех, если mc= mr=15//+i//, v=20х. Принять i равным номеру по журналу.
Задание 2. Оценить точность определения коэффициента дальномера зрительной трубы С, если измерено горизонтальное расстояние от оси вращения трубы до рейки sms и определен отрезок l рейки между дальномерными нитями сетки с ошибкой ml. Ошибкой в определении слагаемого дальномера можно пренебречь. Принять s=147,83 м i (см),ms= 0,070 м (0,000 + i)(м) ;l=1.48м, ml=0,0050м. Принять i равным номеру по журналу.
Задание 3. По результатам измерения угла найти вероятнейшее значение угла, средние квадратические ошибки одного измерения и арифметической средины, вероятную ошибку, среднюю ошибку, предельную. Изменить третью, пятую, десятую ошибку по правилу m 0,i// (табл 1).
Таблица 1.
Значения углов
1
2
3
4
5
6
7
8
9
10
11
12
69о 44/
15//,5
69о 44/ 16//,4
69о 44/ 15//,6
69о 44/ 17//,0
69о 44/ 16//,3
69о 44/ 18//,7
69о 44/ 17//,3
69о 44/ 17//,5
69о 44/ 17//,1
69о 44/ 15//,7
69о 44/ 15//,3
Задание 4. Уравновесить по способу косвенных измерений результаты нивелирования системы ходов (рис). Вычислить среднюю квадратическую ошибку нивелирования на 1 км хода и произвести оценку точности определения отметок узловых реперов и разности уравновешенных отметок НЕ-НС методом весовых коэффициентов по Ганзену. Исходные отметки изменить по правилу Н0.00(i/3)м.
№ марок
Отметки Н,м
А
134,836
В
142,512
Рис. Схема нивелирных ходов
№ ходов
Превышения h,м
+3,436
+4,242
+4,176
+3,506
+2,819
-4,866
+0,744
-1,366
Длины ходов L,км
8,4
7,1
3,8
4,3
6,5
2,7
5,2
3,1
Задача 1
Определить среднюю квадратическую ошибку угла, измеренного одним полным приемом при помощи теодолита Т-30, учитывая ошибку mо отсчета по микроскопу при двух наведениях t, визирования mv и за внецентренность теодолит mc и вес, если mc= mr=20//, v=20х.
Решение:
Найдем ошибки от отдельных источников ошибок. Средняя квадратическая ошибка среднего из отсчетов по двум верньерам
.
Средняя квадратическая ошибка визирования трубой теодолита
Суммарная ошибка измеренного одним полуприемом направления найдется по формуле
,
И .
Угол есть разность двух направлений, следовательно,
Для среднего значения угла, полученного из двух полуприемов,
Задача 2
Оценить точность определения коэффициента дальномера зрительной трубы С, если измерено горизонтальное расстояние от оси вращения трубы до рейки sms и определен отрезок l рейки между дальномерными нитями сетки с ошибкой ml. Ошибкой в определении слагаемого дальномера можно пренебречь. Принять s=147,88 м, ms= 0,075 м; l=1.48м, ml=0,0050м.
Решение
Логарифмируя функцию , получаем
Коэффициент дальномера С будет получен с некоторой ошибкой, вследствии ошибок измерений величин s и l. Эти ошибки вызовут соответствующие ошибки в логарифмах величин s, l, и С, которые обозначим mlgs, mlgl, и mlgC.
Значение mlgs, и mlgl найдем по табличным разностям логарифмов
Табличная разность равна 3.
При изменении s на 0,01 м логарифм s изменяется на 3 единицы последнего знака. При изменении же s на величину логарифм s изменится на величину, приблизительно в 8 раз большую, то есть единицам 5-го знака логарифма
Аналогично находим
Табличная разность равна 30.
Здесь при изменении l на 0,01 м логарифм l изменяется на 30 единиц пятого знака, а так как , то единице 5-го знака логарифма.
Далее
При изменении С на 0,1 логарифм его изменяется на 44 единицы 5-го знака логарифма. Составит пропорцию , откуда . Эти вычисления записываем в таблицу:
Обозначения величин
Значения величин
Изменения
Средние квадратические ошибки
m2lg
величин
их логарифмов
lgs
2.16991
0.01
0.075
24
576
доп. lgl
9.82974
0.001
30
0.005
150
22500
lg C
1.99965
0.1
44
?
23076
C
99.92
0.35
единицы 5-го знака логарифма;
, откуда .
Ответ: .
Задача 3
По результатам измерения угла найти вероятнейшее значение угла, средние квадратические ошибки одного измерения и арифметической средины, вероятную ошибку, среднюю ошибку, предельную.
69о 44/ 16//,1
69о 44/ 16//,8
69о 44/ 16//,2
Решение задачи выполняется в двух вариантах.
Первый вариант:
№п/п
l
е
д
д2
ед
0
/
//
69
15.5
0.2
+1.20
1.44
+0.24
16.4
1.1
+0.30
0.09
+0.33
16.1
0.8
+0.60
0.36
+0.48
17.0
1.7
-0.30
-0.51
16.8
1.5
-0.10
-0.15
18.7
3.4
-2.00
4.00
-6.80
17.3
2.0
-0.60
-1.20
17.5
2.2
-0.80
0.64
-1.76
17.1
1.8
-0.40
0.16
-0.72
16.2
0.9
+0.50
0.25
+0.45
15.3
0.0
+1.40
1.96
0.00
l0
[е]/n
1.4
x'
16.7
-0.50
9.45
-10.15
Страницы: 1, 2, 3