Рефераты. Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел

e will examine Euler's mathematical achievements later in this diploma but at this stage it is worth summarising Euler's work in this period of his career. This is done in [4] as follows:-

... after 1730 he carried out state projects dealing with cartography, science education, magnetism, fire engines, machines, and ship building. ... The core of his research program was now set in place: number theory; infinitary analysis including its emerging branches, differential equations and the calculus of variations; and rational mechanics. He viewed these three fields as intimately interconnected. Studies of number theory were vital to the foundations of calculus, and special functions and differential equations were essential to rational mechanics, which supplied concrete problems.

The publication of many articles and his book Mechanica (1736-37), which extensively presented Newtonian dynamics in the form of mathematical analysis for the first time, started Euler on the way to major mathematical work.

Euler's health problems began in 1735 when he had a severe fever and almost lost his life. However, he kept this news from his parents and members of the Bernoulli family back in Basel until he had recovered. In his autobiographical writings Euler says that his eyesight problems began in 1738 with overstrain due to his cartographic work and that by 1740 he had [4]:-

... lost an eye and [the other] currently may be in the same danger.

However, Calinger in [4] argues that Euler's eyesight problems almost certainly started earlier and that the severe fever of 1735 was a symptom of the eyestrain. He also argues that a portrait of Euler from 1753 suggests that by that stage the sight of his left eye was still good while that of his right eye was poor but not completely blind. Calinger suggests that Euler's left eye became blind from a later cataract rather than eyestrain.

By 1740 Euler had a very high reputation, having won the Grand Prize of the Paris Academy in 1738 and 1740. On both occasions he shared the first prize with others. Euler's reputation was to bring an offer to go to Berlin, but at first he preferred to remain in St Petersburg. However political turmoil in Russia made the position of foreigners particularly difficult and contributed to Euler changing his mind. Accepting an improved offer Euler, at the invitation of Frederick the Great, went to Berlin where an Academy of Science was planned to replace the Society of Sciences. He left St Petersburg on 19 June 1741, arriving in Berlin on 25 July. In a letter to a friend Euler wrote:-

I can do just what I wish [in my research] ... The king calls me his professor, and I think I am the happiest man in the world.

Even while in Berlin Euler continued to receive part of his salary from Russia. For this remuneration he bought books and instruments for the St Petersburg Academy, he continued to write scientific reports for them, and he educated young Russians.

Maupertuis was the president of the Berlin Academy when it was founded in 1744 with Euler as director of mathematics. He deputised for Maupertuis in his absence and the two became great friends. Euler undertook an unbelievable amount of work for the Academy [1]:-

... he supervised the observatory and the botanical gardens; selected the personnel; oversaw various financial matters; and, in particular, managed the publication of various calendars and geographical maps, the sale of which was a source of income for the Academy. The king also charged Euler with practical problems, such as the project in 1749 of correcting the level of the Finow Canal ... At that time he also supervised the work on pumps and pipes of the hydraulic system at Sans Souci, the royal summer residence.

This was not the limit of his duties by any means. He served on the committee of the Academy dealing with the library and of scientific publications. He served as an advisor to the government on state lotteries, insurance, annuities and pensions and artillery. On top of this his scientific output during this period was phenomenal.

During the twenty-five years spent in Berlin, Euler wrote around 380 articles. He wrote books on the calculus of variations; on the calculation of planetary orbits; on artillery and ballistics (extending the book by Robins); on analysis; on shipbuilding and navigation; on the motion of the moon; lectures on the differential calculus; and a popular scientific publication Letters to a Princess of Germany (3 vols., 1768-72).

In 1759 Maupertuis died and Euler assumed the leadership of the Berlin Academy, although not the title of President. The king was in overall charge and Euler was not now on good terms with Frederick despite the early good favour. Euler, who had argued with d'Alembert on scientific matters, was disturbed when Frederick offered d'Alembert the presidency of the Academy in 1763. However d'Alembert refused to move to Berlin but Frederick's continued interference with the running of the Academy made Euler decide that the time had come to leave.

In 1766 Euler returned to St Petersburg and Frederick was greatly angered at his departure. Soon after his return to Russia, Euler became almost entirely blind after an illness. In 1771 his home was destroyed by fire and he was able to save only himself and his mathematical manuscripts. A cataract operation shortly after the fire, still in 1771, restored his sight for a few days but Euler seems to have failed to take the necessary care of himself and he became totally blind. Because of his remarkable memory was able to continue with his work on optics, algebra, and lunar motion. Amazingly after his return to St Petersburg (when Euler was 59) he produced almost half his total works despite the total blindness.

Euler of course did not achieve this remarkable level of output without help. He was helped by his sons, Johann Albrecht Euler who was appointed to the chair of physics at the Academy in St Petersburg in 1766 (becoming its secretary in 1769) and Christoph Euler who had a military career. Euler was also helped by two other members of the Academy, W L Krafft and A J Lexell, and the young mathematician N Fuss who was invited to the Academy from Switzerland in 1772. Fuss, who was Euler's grandson-in-law, became his assistant in 1776. Yushkevich writes in [1]:-

… the scientists assisting Euler were not mere secretaries; he discussed the general scheme of the works with them, and they developed his ideas, calculating tables, and sometimes compiled examples.

For example Euler credits Albrecht, Krafft and Lexell for their help with his 775 page work on the motion of the moon, published in 1772. Fuss helped Euler prepare over 250 articles for publication over a period on about seven years in which he acted as Euler's assistant, including an important work on insurance, which was published in 1776.

Yushkevich describes the day of Euler's death in [1]:-

On 18 September 1783 Euler spent the first half of the day as usual. He gave a mathematics lesson to one of his grandchildren, did some calculations with chalk on two boards on the motion of balloons; then discussed with Lexell and Fuss the recently discovered planet Uranus. About five o'clock in the afternoon he suffered a brain hemorrhage and uttered only "I am dying" before he lost consciousness. He died about eleven o'clock in the evening.

After his death in 1783 the St Petersburg Academy continued to publish Euler's unpublished work for nearly 50 more years.

Глава II. Вклад Эйлера в развитие алгебры

§2.1. Алгебраические доказательства основной теоремы алгебры

Основная теорема алгебры была высказана впервые П. Роте, А. Жираром и Р. Декартом в первой половине XVII в., правда все предложенные ими формулировки сильно отличались от современной: Жирар утверждал, что уравнение степени n должно иметь ровно п корней, действительных или воображаемых, причем смысл последнего термина не уточнялся. Декарт лишь высказал лишь предложение: алгебраическое уравнение может иметь столько корней, какова его степень.

В 40-х годах XVIII в. Маклорен и Эйлер дали основной теореме формулировку, эквивалентную современной: всякое уравнение с действительными коэффициентами можно разложить в произведение множителей 1-й и 2-й степени с действительными коэффициентами, иными словами, уравнение степени п имеет п корней, действительных и комплексных.

Первое доказательство основной теоремы предложил в 1746 г. Даламбер. Хотя ученые XVIII в. и не видели недостатков в этом доказательстве, но оно казалось им слишком аналитичным. Математики стремились обосновать основную теорему чисто алгебраически, исходя из самой теории уравнений. В настоящее время известно, что этого сделать нельзя, если не использовать в том или ином виде свойств непрерывности, однако можно свести применение этих свойств к минимуму. Первое такое «максимально алгебраическое» доказательство принадлежит Леонарду Эйлеру.

Работа Эйлера «Исследования о воображаемых корнях уравнений» («Recherches sur les racines imaginares des equations»), в которой приводится доказательство основной теоремы алгебры, была опубликована в «Мемуарах» Берлинской академии наук за 1749 г. в 1751 г. Латинский вариант этой статьи (Thoremata de radicibus aequationum imaginariis) был представлен Эйлером Берлинской академии наук еще 10 ноября 1746 г. Таким образом, Эйлер проводил свои исследования почти одновременно с Даламбером. Интересно, что при этом оба ученых исходили из совершенно различных принципов.

Доказательство Даламбера достаточно хорошо известно и не имеет точек соприкосновения с работами Эйлера. Доказательство же Эйлера в противоположность доказательству Даламбера в настоящее время почти забыто. Между тем в основе его лежит именно та идея, которая потом повторялась и варьировалась при всех так называемых алгебраических доказательствах основной теоремы. Последующие доказательства могли быть короче или длиннее, более или менее остроумными, могли быть проведены вполне строго или иметь существенные пробелы, однако основная идея оставалась неизменной.

Кроме того, в процессе доказательства Эйлер впервые применил методы исследования уравнений, которые позднее были развиты Лагранжем и стали основными в его работах, посвященных вопросу решения уравнений в радикалах, а затем вошли в качестве неотъемлемой составной части в теорию Галуа.

Современное «алгебраическое доказательство» основной теоремы можно разделить на три части:

1) топологическое предложение, состоящее в том, что каждое алгебраическое уравнение f(x)=0 нечетной степени с действительными коэффициентами имеет действительный корень;

2) конструкция поля разложения многочлена f(x)=0, т.е. такого поля, над которым f(x)=0, распадается на линейные множители;

3) редукция, сводящая нахождение корня уравнения f(x)=0 степени m=2kr, где r нечетное, к нахождению корней уравнения F(x)=0 степени 2k+1r1, где r1 нечетное.

Все эти части встречаются уже в доказательстве Эйлера: топологическое предложение он формулирует и считает очевидным. Затем он предполагает, что каждый многочлен с действительными коэффициентами можно представить в виде

fm(x)=(x-б1)(x-б2)…(x-бm),

где б1,…,бm - некоторые символы или воображаемые количества, о которых нам заранее ничего не известно, кроме того, что с ними можно проводить обычные действия арифметики по тем же правилам, что и для обычных чисел (т.е. применять к ним закон коммутативности умножения и сложения, дистрибутивность умножения по отношению к сложению и т.д.). Оперируя с этими символами б1,…,бm , Эйлер провел редукцию для уравнений степени 4, 8, 16 и наметил ее для уравнений т=2k. Последнюю редукцию безупречно строго провел Лагранж, опираясь на теоремы о симметрических и подобных функциях, в статье «О видах мнимых корней уравнений». В результате было доказано, что все бi являются либо действительными, либо комплексными числами.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.