Рефераты. Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел

p align="left">Если рассмотреть основную теорему алгебры как одно из элементарных предложений теории функции комплексного переменного, то вряд ли эта теорема может представить интерес. Но, с другой стороны такие великие математики, как Эйлер, Лагранж, Лаплас и Гаусс, занимались ею, причем Гаусс предложил для нее четыре различных доказательства. Алгебраические доказательства теоремы тесно связаны с общей теорией уравнений. Уже в доказательствах Эйлера и Лагранжа выявилась связь алгебраических доказательств с теорией симметрических функций и подобных функций корней уравнения. [12]

§2.2 Числовые приближенные методы решения уравнений

п.2.2.1. Метод рекуррентных рядов

Другим приближенным методом, который покоился на совсем иной основе, чем способ Ньютона, и не нуждался в определении границ корней, был метод рекуррентных рядов, сообщенный Даниилом Бернулли в Comm. Ac. Petr., 1728 (1732). Возникновение этого метода было, впрочем, связано с замечаниями Ньютона о применении к решению уравнений сумм степеней корней. Способ Бернулли заключался в следующем. Пусть требуется решить уравнение

и пусть выбраны п произвольных чисел Р1, Р2, Р3,..., Рп. Если теперь определить Рп+1, Рп+2, ... рекуррентным законом

(т=1, 2, 3,...), то отношение с возрастанием т приближается к наибольшему по абсолютной величине корню уравнения. Даниил Бернулли высказал эту теорему без доказательства. [12] Эйлер в 17-й главе «Введения» (1748) тщательно разобрал этот метод и привел отсутствовавший вывод.

Так как всякий рекуррентный ряд получается из развертывания рациональной дроби, то пусть эта дробь будет равна

откуда получается рекуррентный ряд

А+Вz+Cz2+Dz3+Ez4+Fz5+ и т.д.

его коэффициенты А, В, С, D, и т.д. определятся так:

A=a, B=A+b, C=B+A+c,

D=C+B+A+d, E=D+C+B+A+e и т.д.

Общий же член, т.е. коэффициент степени zn, найдется из разложения данной дроби на простые дроби, знаменатели коих являются множителями знаменателя

1-z-z2-z3- и т.д.

Вид общего члена зависит, главным образом, от свойств простых множителей знаменателя, будут ли они действительными или мнимыми, а так же от того, будут ли они отличны друг от друга или два и более будут одинаковыми. Для последовательного рассмотрения этих различных случаев положим вначале, что все простые множители знаменателя действительны и не равны между собой. Пусть все простые множители знаменателя будут

(1-pz)(1-qz)(1-rz)(1-sz) и т.д.

и тогда данная дробь разложится на простые дроби.

Когда они найдены, то общий член рекуррентного ряда будет равен

примем его равным Pzn; значит, P будет коэффициентом степени zn; у следующих же членов пусть коэффициенты будут Q, R, и т.д., так что рекуррентный ряд будет

А+Bz+Cz2+Dz3+…+Pzn+Qzn+1+Rzn+2+ и т.д.

Теперь положим, что п представляет чрезвычайно большое число, т.е. что рекуррентный ряд продолжен весьма далеко; так как степени неравных чисел тем более отличаются друг от друга, чем они больше, тем между степенями и т.д. будет такое различие, что степень, соответствующая наибольшему из чисел р, q, r и т.д. между собой не равны, то пусть p будет наибольшим среди них. Тогда, если п будет числом бесконечно большим, будем иметь

если же п будет числом не бесконечно, а лишь очень большим, то только приближенно будет Подобным образом будет и, следовательно.

Отсюда ясно, что если рекуррентный ряд продолжить достаточно далеко, то коэффициент любого члена при делении на предыдущий дает приближенное значение наибольшей буквы р.

Итак, если у данной дроби

в знаменателе все сомножители простые, действительные и не равные между собой, то из получающегося отсюда рекуррентного ряда можно будет узнать один простой множитель, именно, 1-pz, в котором буква р имеет самое большое значение. При этом коэффициенты числителя не играют роли, и, каковы бы ни были, для наибольше буквы р найдется одно и то же верное значение. Верное же значение р обнаружится лишь тогда, когда ряд будет продолжен до бесконечности; когда получены уже многие его члены, то значение p найдется тем ближе, чем больше число членов и чем более буква р превосходит остальные q, r, s и т.д.; при этом безразлично, будет ли эта буква р сопровождаться знаком плюс или минус, так как степени ее возрастают одинаково.

Теперь в достаточной степени выясняется, каким образом это исследование может быть применено к нахождению корней, какого либо алгебраического уравнения. Зная множители знаменателя

1-z-z2-z3-z4- и т.д.,

легко указать корни уравнения

1-z-z2-z3-z4- и т.д. =0,

так, что если множитель будет 1-pz, то один корень этого уравнения будет z=. Так как из рекуррентного ряда найдется наибольшее число р, то тем самым получится наибольший корень уравнения

1-z-z2-z3- и т.д. =0,

Или если положить z=, чтобы получилось уравнение

xm-xm-1-xm-2-xm-3- и т.д. =0,

то посредством того же метода получится наибольший корень этого уравнения х=р.

Итак, пусть дано уравнение

xm-xm-1-xm-2-xm-3- и т.д. =0,

у которого все корни действительны и не равны между собой; наибольший из этих корней найдется следующим образом. Составим из коэффициентов этого уравнения дробь

и отсюда образуем рекуррентный ряд, беря числитель произвольно или, что то же, принимая начальные члены произвольными; пусть этот ряд есть

А+Bz+Cz2+Dz3+…+Pzn+Qzn+1+ и т.д.

тогда дробь даст значение наибольшего корня х данного уравнения тем ближе, чем больше число п. [6]

п.2.2.2. Еще два оригинальных метода.

Кроме метода Бернулли, который сохранился до нашего времени в форме, сообщенной ему Лагранжем, XVIII столетие принесло еще два оригинальных метода И. Г. Ламберта. Оба они были изложены в статье «Различные замечания о чистой математике» (Observationes variae in mathesin puram в Acta Helvetica за 1758). Если в уравнении

сделать подстановку x = k+y и пренебречь всеми степенями у, кроме первой, то получится, что

Когда k представляет собой какое-либо число, эта формула, согласно Ламберту, дает приближенное значение для корня, ближайшего к k. Второй метод заключался в применении ряда, получившего название ламбертова, к трехчленным уравнениям вида

ахх + bx = d или, что то же, хт + рх = q, по способу последовательных приближений. Ряд этот

сходится при (т - l)m-1рm> mmqm-1, что и было без доказательства указано его автором.

Эйлер, которому Ламберт по приезде в Берлин в 1764 сообщил о своей работе, тотчас же сделал из нее отправной пункт новых изысканий. Полуиндуктивным способом он нашел ряды для решения уравнений более чем с тремя и даже с любым числом членов; впрочем, о сходимости этих рядов он по обыкновению не заботился [Nov. Comm. Ac. Petr., 1770 (1771)]. К этим замечательным рядам он затем возвращался в позднейших статьях [Nov. Comm. Ac. Petr., 1775 (1776), Act: Ac. Petr., 1779 (ч. II, 1783), а также Nov. Act. Petr., 1786 (1789) и 1794 (1801)], причем добавил недостававшее еще доказательство их справедливости. Он дал также ряды, с помощью которых можно выражать не только корни уравнений, но и их степени [Nov. Act. Petr., 1786 (1789) и 1794 (1801)]. [12]

§2.3. Общая теория уравнений

Долгое время великие математики пытались решить уравнения выше четвертой степени. Их неудачи не смогли поколебать убеждения математиков XVIII столетия о разрешимости всех алгебраических уравнений в обыкновенных иррациональностях. Великий Леонард Эйлер так же держался этого взгляда.

Comm. Ac. Petrop. за 1732/33 (1738) содержали первую статью Эйлера о решении уравнений. Он указывал, что решение уравнений второй, третьей и четвертой степеней приводится к уравнениям соответственно первой, второй и третьей степени; эти последние уравнения он называл «aequatio resolvens» («разрешающее уравнение»), откуда и возникло слово «резольвента». Эйлеру удалось образовать резольвенту уравнения третьей степени

х3=ах+b

с помощью подстановки

а уравнения четвертой степени

x4=ax2+bx+c

с помощью подстановок

или х=

(благодаря чему он нашел новое решение уравнения четвертой степени). На этом основании он счел правомерным заключить, что, по всей вероятности, и для уравнения

должна существовать резольвента (п-1)-й степени, определить которую следует посредством подстановки х=, Но уже при n=5 попытка, естественно, окончилась неудачей. Эйлер сумел достигнуть цели только в частном случае возвратных уравнений, на которые впервые натолкнулся Муавр в «Аналитических этюдах» (1730) и которые получили свое название от самого Эйлера. Спустя почти 30 лет [в Nov. Comm. Ac. Petr., 1762/63 (1764)] Эйлер вновь обратился к этому методу. Эта работа была уже представлена в 1759. Он улучшил подстановку, придав ей вид

,

и полагал, что нашел правильную форму, которая позволит отыскать решение общей задачи. Он оказался при этом в согласии с Варингом, применившим в «Аналитических этюдах» (Miscellanea analytica, 1762) такую же форму радикалов. Но именно от этой формы отправился Абель в своем доказательстве невозможности решения уравнения пятой степени в радикалах. Эйлер использовал также преобразование Чирнгауза, несколько видоизменив его. Полагая, что с его помощью можно найти решение любого уравнения, он приложил его к решению уравнений третьей и четвертой степеней.[11]

Глава III. Выдающиеся достижения Леонарда Эйлера в области геометрии и тригонометрии

Не будет преувеличением сказать, что за последние годы в области «Эйлероведения» сделано больше, чем за весь XIX век. Геометрическим работам Эйлера отведено пять томов первой серии Opera omnia. По объему это составляет примерно 20% всех его математических работ.

§3.1. Развитие аналитической геометрии, начиная с систематического исследования высших порядков

В рассматриваемое время координатный метод употребляли преимущественно в дифференциально-геометрических исследованиях, или же, если подчеркивали значение метода Декарта, применяли его к высшим алгебраическим кривым. Последним занялся, в частности, де-Гюа-де-Мальв в небольшой книге «Применения анализа Декарта», которая была богаче новыми идеями, чем аналитическими выводами. Эти исследования более высокого порядка могли быть с таким же успехом приложены к коническим сечениям, которые иногда и привлекались в качестве примеров. Так, например, де-Гюа впервые дал для конического сечения

nyy+rxy+mxx+ay+bx+cc=0

(т, п, r обозначают числа, но а, b, с -- отрезки) уравнение, определяющее координаты центра, в виде

Cледует упомянуть, что для де-Гюа было вполне привычным представление о кривой, распадающейся на несколько других, т. е. кривой, уравнение которой в левой части разлагается на ряд множителей. Он даже называл уравнение у3= х3 уравнением трех прямых, две из которых мнимые.

Сочинение Г. Крамера «Введение в анализ алгебраических кривых», опиравшееся во многих отношениях на работу де-Гюа и изданное десятью годами позднее, также ограничивалось высшими алгебраическими кривыми. Тем временем уже появился второй том «Введения в анализ» (1748) Эйлера, поднявший на существенно более высокую ступень и аналитическую теорию конических сечений. Эйлер целиком еще держался декартова понятия о координатах, между тем как Крамер, на сочинение которого книга Эйлера повлиять уже не могла, впервые равноправно определил две координаты и последовательно ввел ось ординат. Правда, в преобразованиях координат у Крамера ось ординат все еще играла несколько беспомощную роль. Со времен Витта преобразования координат употреблялись всеми математиками и нередко принимали даже довольно сложные формы, ибо тогда часто переходили от одной косоугольной системы к другой, с новым началом и отличным координатным углом, не пользуясь при этом тригонометрическими функциями. Впервые последними воспользовался для этой цели Эйлер во «Введении в анализ». Он еще часто обозначал синус или косинус угла посредством какой-либо специальной буквы. Но у него имелись уже и такие формулы преобразования прямоугольной системы:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.